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In the last three decades, the multi-subunit Mediator complex has emerged as the key component of
transcriptional regulation of eukaryotic gene expression. Although there were initial hiccups, recent
advancements in bioinformatics tools contributed significantly to in-silico prediction and characterization
of Mediator subunits from several organisms belonging to different eukaryotic kingdoms. In this study,
we have developed the first database of Mediator proteins named MedProDB with 33,971 Mediator pro-
tein entries. Out of those, 12531, 11545, and 9895 sequences belong to metazoans, plants, and fungi,
respectively. Apart from the core information consisting of sequence, length, position, organism, molec-
ular weight, and taxonomic lineage, additional information of each Mediator sequence like aromaticity,
hydropathy, instability index, isoelectric point, functions, interactions, repeat regions, diseases, sequence
alignment to Mediator subunit family, Intrinsically Disordered Regions (IDRs), Post-translation modifica-
tions (PTMs), and Molecular Recognition Features (MoRFs) may be of high utility to the users.
Furthermore, different types of search and browse options with four different tools namely BLAST,
Smith-Waterman Align, IUPred, and MoRF-Chibi_Light are provided at MedProDB to perform different
types of analysis. Being a critical component of the transcriptional machinery and regulating almost all
the aspects of transcription, it generated lots of interest in structural and functional studies of
Mediator functioning. So, we think that the MedProDB database will be very useful for researchers study-
ing the process of transcription. This database is freely available at www.nipgr.ac.in/MedProDB.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For the past several decades, this has been known that RNA
Polymerase II (Pol II) enzyme is responsible for the expression of
most non-coding genes and all protein-coding genes. However, this
enzyme does not initiate transcription on its own but it is regu-
lated within a macromolecular assembly known as Pre-Initiation
Complex (PIC) [1–3]. Transcription regulation by Pol II requires
activities of various activators and repressors, which bind to their
target sites on DNA to modulate the process by either chromatin
modification or direct protein–protein interaction. The functions
of these transcription factors are further regulated by transcription
co-regulators [4]. The Mediator is a huge co-regulator protein com-
plex with multiple subunits and was first discovered in yeast as a
part of activator-dependent transcription [5]. It is an evolutionary
conserved multi-subunit protein complex that mainly functions as
a bridge between transcription factors and basal transcription
machinery [5]. Additionally, subunits of the Mediator complex
have also been implicated in transcript elongation, transcript pro-
cessing, gene looping, termination of transcription, and in various
human disease including cancers [2,4,6–10]. The subunits are
arranged in four different modules; head, middle, tail, and kinase
modules. Head, middle, and tail modules form the core of the com-
plex whereas kinase modules can be associated with and dissoci-
ated from the core in response to specific signals [11,12]. The
deletion of various Mediator subunits can be lethal as transcription
of nearly all protein-coding genes and regulatory non-coding RNA
genes are regulated by Mediator [4]. Since Mediator regulates the
fundamental process of transcription, it can affect different cellular
and physiological processes. In yeast, Mediator subunits have been
implicated in multidrug resistance, metal detoxification, fatty acid
beta-oxidation, and peroxisome proliferation [11,13–15]. In both
animals and plants, Mediator is the endpoint of signal transduction
pathways [16,17]. In animals, mutations in different Mediator sub-
units have been linked to different cancers and other immune
aberrations [18]. Similarly, in plants also, Mediator subunits are
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important for flowering, embryo development, seed development
[19–21], phenylpropanoid pathway [22], immunity [23], fatty acid
homeostasis [14], non-coding RNA production [24], and hormone
signalling [19,25].

Since its discovery in yeast in the early 1990s, the Mediator
complex has been purified from humans and a few other animal
cells [26,27]. The first plant Mediator complex was purified from
Arabidopsis cell suspension culture [28]. Since then, using a combi-
nation of bioinformatics and biochemical tools, Mediator subunits
have been identified and characterized in many other eukaryotes
[5,29,30]. Low-resolution electron microscopy (EM) structure of
the whole Mediator complex and high-resolution X-ray crystal
structure of the head and the middle modules have been solved
in yeast [31,32]. There is no EM or crystal structure available for
the plant. So, we expounded the structural topology of the Ara-
bidopsis Mediator complex based on interactions among the sub-
units [33]. The comparative analyses suggest that the overall
structure of the Mediator complex is conserved across three major
eukaryotic kingdoms [33,34]. Despite extensive structural and
functional studies, the exact mechanism of how Mediator interacts
with other proteins and helps in transcription is not very well
understood [35]. The Mediator complex is very dynamic that
changes its conformation in response to different transcriptional
cues. It has been demonstrated that the association of one protein
with a Mediator can change its structure leading to subsequent
interaction with other proteins [1,36]. Alternatively, a change in
structure may lead to the dissociation of already associated pro-
teins [2]. This suggests that the overall structure of the Mediator
complex is very flexible. We and others have found that the struc-
tural flexibility of the Mediator complex is due to the presence of
an abundant amount of polar, charged, and structure-breaking
amino acids in its subunits [5,37]. Stretch of such amino acids
make Intrinsically Disordered Region (IDR), and Mediator subunits
harbor high numbers of such IDRs [5,37]. Under normal physiolog-
ical conditions, the protein segments carrying IDRs lack stable ter-
tiary and/or secondary structures [38]. Because of these IDRs,
Mediator subunits can interact with so many other proteins [5].
Usually, the IDRs harbor short Molecular Recognition Features
(MoRFs), which nucleate protein–protein interaction by undergo-
ing disorder-to-order transition upon binding [39]. In one of our
earlier studies, we found that orthologous Mediator subunits show
similar disorders, and their IDRs and MoRFs are conserved across
eukaryotic kingdoms suggesting that disorder is fundamental to
Mediator’s ability to process different signals into specific outputs
[5].

Since its discovery in yeast in the early 1990s, the Mediator has
attracted the attention of bioinformaticians, molecular biologists,
geneticists, biochemists, and biophysicists for the study of different
aspects of its structural and functional characteristics. As of today,
there are more than 7800 publications on the Mediator complex
entered in Pubmed [40]. It includes more than 1300 review articles
highlighting the interest of the research community in Mediator
biology. Despite being such a popular topic of research, surpris-
ingly, to the best of our knowledge, there is no database of Media-
tor subunits available in the public domain. In this study, we have
developed the first Mediator protein database (named MedProDB)
that contains sequence information of Mediator subunits identified
in metazoans, fungi, and plants. We have also studied the proper-
ties of this important class of proteins. The overall structure and
major elements of the MedProDB are highlighted in the ‘Graphical
Abstract’. We think that the availability of all the relevant informa-
tion on Mediator subunits in one database will be helpful to the
researchers engaged in transcriptional regulation of eukaryotic
gene expression.
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2. Materials and methods

2.1. Sequence retrieval and identification of Mediator subunits in fungi,
metazoans, and plants

Mediator subunit sequences of 20 metazoans, 2 plants, and 26
fungi species were downloaded from the UniProtKB/Swiss-Prot
[41], TAIR [42], and Oryzabase [43] (Supplementary Sheet 1.1),
and further used to construct the kingdom wise HMM profiles of
each Mediator subunit type. ClustalO [44] and HMMER [45] tools
were used to generate the Multiple Sequence Alignment (MSA),
and HMM profiles respectively. Those HMM profiles were further
used as a query against the Uniprot database by using HMMSearch
[45] at significance E-value of 0.01, and report E-value of 0.01. All
the similarity hits were downloaded, and processed to remove the
redundancy. Afterwards, final sequence datasets were used for fur-
ther analysis.

2.2. Features’ calculation of Mediator subunits

2.2.1. Information mining
For each sequence identified as Mediator subunit, we per-

formed data-mining from cross-reference databases like Uni-
ProtKB, IntAct, and PubMed [40,41,46], and obtained the
information on annotated functions along with their GO terms
(Cellular component, biological function, and biological process),
interactions, evidence codes and published literature (PubMed
IDs). For each Mediator sequence, repeat regions detected by
RADAR [47] tool. We have manually curated the human disease
data from the 8525 research articles of Mediator complex.

2.2.2. Physicochemical properties
Some of the sequences in the database were extremely long,

and some were very short. This could significantly mask the actual
average length and molecular weight of Mediator subunits. So,
Inter-Quartile Range (IQR) outlier detection method was employed
to exclude outlier sequences [48]. Properties of Mediator subunits
like length, molecular weight, aromaticity, Grand Average of
Hydropathy (GRAVY), instability index, and isoelectric point were
calculated for all Mediator sequences (length and molecular
weight were calculated excluding outlier sequences). These prop-
erties were calculated by using the ‘Bio.SeqUtils.ProtParam’ biopy-
thon module [49], and their averages across eukaryotes were
calculated for each subunit.

2.2.3. Repeat regions
Repeat regions inside each Mediator protein sequence was cal-

culated in-house using computational tool RADAR (Rapid auto-
matic detection and alignment of repeats in protein sequences)
[47].

2.2.4. Disordered regions
Disordered protein regions were identified in all the mediator

subunit sequences by using the IUPred tool [50]. It calculates dis-
order in protein sequences based on the energy estimation of pair-
wise interactions in a window around a residue [50]. For each
subunit sequence in all three kingdoms, the average number of
IDRs, and average disorder scores were calculated. As mentioned
in our previous study, a threshold value of 0.5 was considered for
an amino acid to be disordered [5]. The average disorder of each
sequence was calculated as a mean of the disorder score of each
amino acid constituting the sequence. The IDR was considered as
an uninterrupted stretch of at least 30 amino acids with a disorder
score above 0.5 [5].
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The position of IDRs in each Mediator subunit sequence was
also determined. For this, each Mediator sequence was divided into
three parts namely head (N-terminus), middle, and tail (C-
terminus). The central position of the IDR region was considered
for the assignment of its location in the sequence (e.g. head, mid-
dle, and tail). An IDR is called ‘conserved’ if at least 70% or more
organisms of a kingdom have an IDR in the same region of the
Mediator subunit.

2.2.5. Molecular Recognition Features (MoRFs)
The protein–protein recognition, and interaction sites were pre-

dicted in Mediator subunits of all organisms using MoRF-CHibi
[51]. A stretch of at least five amino acids with a score �0.72
was considered as a potential recognition and binding site. The
average number of MoRFs were also calculated for each subunit
and kingdom.

2.2.6. Post translational modification sites (PTMs)
Four major types of PTMs such as phosphorylation of Ser, Thr,

and Tyr; N-linked Asn and O-linked proline glycosylation;
Lys/Arg methylation, and Lys acetylation were analyzed in Media-
tor subunits of S. cerevisiae, A. thaliana, O. sativa subsp. japonica, C.
elegans, D. melanogaster, D. rerio, and H. sapiens by using NetPhos
v2.0 [52], NetOGlyc v4.0 [53], GPS-MSP [54], and PAIL [55] at
default parameters for phosphorylation, glycosylation, methyla-
tion, and acetylation respectively. Further, we have also detected
PTM sites that are exclusively residing inside IDRs, and MoRFs by
using in-house developed Perl scripts. The average number of
PTM (acetylation, glycosylation, methylation, and phosphorylation)
sites were calculated for each Mediator subunit in every kingdom.

2.3. Web server

After the collection and compilation of all the information for
Mediator protein sequences, the web-interface was developed
using Hypertext Mark-up Language (HTML), Cascading Style Sheets
(CSS), Structured Query Language (SQL), Java scripting language,
PERL, and Hypertext Pre-processor (PHP) on Apache Hypertext
Transfer Protocol server. MySQL was adopted to store the data. It
is an Object-Relational Database Management System (ORDBMS),
and it works at the backend. It provides commands to retrieve, rep-
resent, and store the data in the database from the server. Hyper-
text Markup Language (HTML), Hypertext Pre-processor (PHP), and
JAVA scripts were used to develop the front–end web interface. All
common gateway interface and database interfacing scripts were
written in PHP and PERL programming languages. These languages
were preferred to develop the database as Apache, MySQL, and PHP
technology are platform-independent and open-source software.
3. Results

3.1. Mediator subunit sequences identification

Besides already reviewed Mediator subunit sequences in 20
metazoans (Supplementary Sheet 1.2), 26 fungi (Supplementary
Sheet 1.3), and 2 plants (Supplementary Sheet 1.4) available in
Swiss-Prot, TAIR, and Oryzabase [41–43], we have identified the
different Mediator subunit sequences through HMM profiling of
reviewed Mediator subunits with the TrEMBL database. We have
removed the redundancy in the dataset, and obtained a total of
12,270 metazoan, 9593 fungal, and 11,479 plant Mediator
sequences through this HMM search. In addition to this, we have
also incorporated 261 metazoan, 302 fungal, and 66 plant Mediator
subunit sequences, which were initially downloaded from Swis-
sProt as the reference Mediator sequences. This made a total of
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12,531 (312 species) metazoan, 9895 (632 species) fungal, and
11,545 (121 species) plant Mediator sequences in the final data-
base. A total of 33,971 (1113 species) Mediator sequences have
been incorporated in the MedProDB database for all kingdoms. A
list of all organisms used for this study is listed in Supplementary
Sheet 1.1–1.5.

In this study, we have identified 30, 25, and 33 Mediator sub-
units in metazoans, fungi, and plants respectively. A total of 24
subunits were found to be common in all eukaryotes. There have
been few discrepancies in the Mediator complex composition,
and different experimental studies have concluded different
results [28,56] about the discovery of some Mediator proteins.
However, the major constituent subunits of the complex were
the same in all the experiments. As the purpose of this database
is to serve as a comprehensive resource of Mediator subunits for
the research community, we have included all the subunits that
have been characterized to date in any organism. The aforemen-
tioned previous studies have declared Mediator subunits Med34,
Med35, Med36, and Med37 as plant-specific. Although we found
that the homologs of these subunits are coded by metazoan and
fungal genomes, the peptides could not be detected in respective
Mediator purifications. On the other hand, Med23, Med25,
Med26, Med28, and Med30 subunits have not been reported in
fungi. Med1 subunit could not be found in the plants.

3.2. General features of Mediator subunits

3.2.1. Physicochemical properties
The average length and mass of the Mediator complex across

eukaryotes were found to be 15,041 aa (amino acids) and
1669 kDa (1.67 MDa), respectively. The average length of individ-
ual head, middle, tail, and kinase modules was 2469 aa, 1734 aa,
5226 aa, and 4046 aa, respectively, and, the average mass of these
modules was 275 kDa, 192 kDa, 581 kDa, and 449 kDa,
respectively.

The average length of the Mediator complex in metazoans,
fungi, and plants was found to be 14,502 aa, 12,648 aa, and
17,974 aa, respectively (Supplementary Sheet 1.6) and, the average
molecular weight of the Mediator complex in metazoans, fungi,
and plants was found to be 1616 kDa (1.62 MDa), 1404 kDa
(1.40 MDa), and 1989 kDa (1.99), respectively (Supplementary
Sheet 1.7).

The tail and kinase modules were the largest among all four
modules. The largest Mediator subunits across the eukaryotes were
Med12 (1765 aa) and Med13 (1540 aa). Also, Med12 (2150 amino
acids) in plants was significantly larger than Med12 of metazoans
(1589 aa) and fungi (1555 aa). In all eukaryotes, the middle module
was found to be the shortest (Supplementary Sheet 1.6). The short-
est Mediator subunit in metazoans, fungi, and plants were Med9
(121 aa), Med31 (136 aa), and Med11 (117 aa) respectively. On
the contrary, Med1 of the middle module was found to be a huge
subunit in metazoans (1247 aa) and fungi (501 aa). Interestingly,
Med1 was not found in plants. Significant length variations were
found in Med2/29/32 of fungi (411 aa), metazoans (185 aa), and
plants (752 aa) (Supplementary Sheet 1.6).

We also looked at the aromaticity values of Mediator subunits
by calculating the relative frequency of Phe + Trp + Tyr [53]. In
eukaryotes, Med31 (~0.12) and CycC (~0.11) were found to be
the most aromatic Mediator subunits, whereas Med21 (~0.03)
was least aromatic. In plants, Med28 (~0.04) and Med30 (~0.04)
were the least aromatic subunits (Supplementary Sheet 1.8).

GRAVY (Grand Average of Hydropathy) score is the value calcu-
lated as the sum of hydropathy values of all the amino acids
divided by the number of residues in the sequence. The average
GRAVY score for each Mediator subunit was calculated and
Med19 (~�1.1) was found to be the most hydrophilic Mediator
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subunit across all kingdoms (Supplementary Sheet 1.9). Med18
(~0.23) and Med33 (~0.16) were found to be hydrophobic in plants.

The average instability index values of the Mediator subunit
sequences were calculated by implementing a method to test the
protein for its stability by Guruprasad et al. [57]. Any value above
40 means the Mediator protein is probably unstable with a short
half-life. Med15 (~63.76) of the tail module, Med9 (~62.51),
Med7 (~59), and Med4 (~58) of the middle module were the most
unstable Mediator subunits. On the contrary, Med10 (~37.4) in all
eukaryotes, Med36 (~31.58), and Med37 (~32.88) in plants were
the most stable subunits (Supplementary Sheet 1.10). CDK8 was
found with the highest isoelectric point (pI ~ 9.04), whereas
Med21 had the lowest pI value (~4.77). In plants, Med37 had the
lowest average pI of 5.16 (Supplementary Sheet 1.11).

3.2.2. IDR analysis
A stretch of 30 or more disordered amino acids present together

constitute an IDR [5]. The IDRs provide flexibility to the specific
regions in a protein that helps them to interact dynamically with
other biomolecules involved in several biological processes. Most
of the signaling proteins and transcription factors contain IDRs.
Earlier studies from our and other’s laboratories have explained
the importance of IDRs in Mediator subunits [5,37,58,59]. Here,
in this section, we have updated the information on the disorder
of Mediator subunits and incorporated it into our database.

The prevalence of average disorder greater than 0.5 among all
three kingdoms was found in Med15 of the tail module, and
Med19 of the head module (Fig. 1). This reflects the highly flexible
nature of Med15, Med19 subunits and their probable interactions
with multiple proteins. Indeed, Med15 has been found to interact
with so many proteins [58,60,61]. In metazoans and fungi,
Med26 also had a disorder greater than 0.5 (Fig. 1).

In all three kingdoms, Med8 of the head module, Med9, Med4 of
the middle module, and Med25, had average disorder values
greater than 0.4. A few Mediator subunits were significantly disor-
dered for individual kingdoms. In particular, Med2/29/32, and
Med3/27 were highly disordered in metazoans, with a disorder
value greater than 0.6. In fungi, Med8, and Med11 of the head mod-
ule, Med4, Med9 of the middle module, Med2/29/32, and Med3/27
of the tail module were significantly disordered with values greater
than 0.5 (Fig. 1). In plants, Med8, Med30 of the head module, Med4,
Fig. 1. Average disorder in Mediator subunits of metazoans, fungi, and plants. Vertical b
Kinase). Horizontal dashed line at disorder value 0.5 is the threshold for a subunit to be
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Med9 of the middle module, Med26, and Med35 were found to be
highly disordered with values greater than 0.5 (Fig. 1).

There were at least two IDRs found in Med12, Med13 of kinase
module, and Med15 of the tail module across all eukaryotes.
Besides, Med18, Med19 of the head module, Med1 of the middle
module, and Med27 of the tail module in metazoan had at least
two IDRs. In fungi, Med19 of the head; and in plants, Med4 of
the middle, Med16 of the tail, Med25, Med34 and, Med35 were
found to have two IDRs of at least 30 amino acids length (Supple-
mentary Sheet 2.1).

Next, we looked at the conserved IDRs as described earlier [5].
Briefly, we divided each Mediator subunit into three equal regions
namely amino (N-), middle, and carboxyl (C-) regions, and
searched for the presence of >50% of IDR in a certain region. An
IDR was called ‘highly conserved’ if >50% of IDR was present in
the respective region in at least 70% of the organisms in a kingdom.
This analysis revealed some unique patterns of IDRs in Mediator
subunits of all kingdoms.

A total of 8 Mediator subunits, which were found in all eukary-
otes, had highly conserved IDRs. Out of those, Med4, Med6, Med8,
Med19, Med31, CDK8 had conserved IDRs at C-terminus, Med9 at
the N-terminus, Med15 at the N-terminus and the middle region
(Fig. 2 and Supplementary Sheet 2.2). Among 18 Mediator subunits
of metazoans, highly conserved IDRs were present towards the N-
terminus of Med13, Med16, Med17, Med18, Med27, Med29,
Med30; middle region of Med1, Med13, Med21, Med26; at C-
terminus of Med1, Med7, Med11, Med12, Med13, Med14, Med20,
Med22, Med25, and CyCC (Fig. 2A). In fungi, highly conserved IDRs
were present at the N-terminus of Med12, Med13, Med14, and
Med17; at the middle region of Med2, Med3, Med13, and
Med21; and at C-terminus of Med1, Med5, and CyCC (Fig. 2B). In
plants, Med7, Med10, Med13, Med20, Med27, Med28, Med32,
Med35, and Med36 had highly conserved IDRs at the N-
terminus; Med14, Med25, Med30, and Med35 had in the middle;
Med12, Med13, Med25, Med26, Med27, Med34, and Med35 at
the C-terminus (Fig. 2C).

In metazoans, IDRs were mostly present towards the C-
terminus, whereas, in fungi and plants, those were located at both
the terminals of the Mediator subunits. Interestingly, disorder
regions of Med15 were present in all three regions (N-terminus,
middle, and C-terminus) in more than 70% of all the eukaryotes,
old lines separate subunits belonging to different modules (Head, Middle, Tail, and
considered as disordered.



Fig. 2. Conservation of IDRs in Mediator subunits at a given region (N-terminus, middle, and C-terminus) for (A) metazoans, (B) fungi, and (C) plants. IDR in Mediator subunit
is considered conserved when at least 70% (horizontal bold line) of the organisms have IDRs at a particular region.
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but these regions were higher in number at the N-terminus and
middle region of this subunit. In metazoans and fungi, Med13
had the highest number of IDRs in the middle region of the subunit,
4169
but in plants, Med13 had a higher number of IDRs at both the ter-
minals. Also, in plants, IDRs were distributed in all regions of the
Med35, towards the N-terminus of Med36, and C-terminus of the
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Med37. In all three kingdoms, CDK8 had IDRs only towards the C-
terminus.
3.2.3. Molecular Recognition Features (MoRFs)
The MoRFs are small regions in the IDRs of proteins that act as

interfaces participating in protein–protein interaction. During its
interaction with a biomolecule, these small regions nucleate
disorder-to-order transition of the disorder region. MoRF predic-
tions were performed on three kingdoms by using MoRF-CHibi
[51]. In general, most of the Mediator subunits had 1to 2 MoRFs.
In metazoans, Med6, Med19, Med22 of the head module, Med1
of the middle module, Med13, and CDK8 of the kinase module
had more than 2 MoRFs. In most metazoans, more than 5 MoRFs
were found in Med1. In most fungal species, 14 Mediator subunits
had more MoRFs than metazoans and plants counterparts. Also,
Med2 of most fungal species had more than 3 MoRFs. In most
plants, more than 2 MoRFs were found in Med6, Med21, CDK8,
Med26, and Med35 (Supplementary Sheet 2.3).
Fig. 3. Post-translational modification sites in IDRs of Mediator subunits for 8
model organisms, (A) Phosphorylation (serine, threonine, and tyrosine) and
acetylation (lysine) sites, and (B) Glycosylation (asparagine) and methylation
(arginine) sites in the IDRs of Mediator complexes of A. thaliana (ARATH), C. elegans
(CAEEL), G. gallus (CHICK), D. melanogaster (DROME), D. rerio (DANRE), H. sapiens
(HUMAN), S. cerevisiae (YEAST), and O. sativa (ORYSJ).
3.2.4. Post-translational modification sites (PTMs)
Post-translational modifications (PTMs) are necessary mecha-

nisms for enhancing the interactions of proteins and their func-
tions. Phosphorylation and Acetylation sites especially help in
refining the electrostatic interactions of disorder regions in
proteins.

Phosphorylation, Acetylation, Methylation, and Glycosylation
sites were predicted in the Mediator subunit sequences of eight
model organisms and compared the presence of PTMs inside and
outside the IDRs. More than 40% of Serine sites in IDR were found
for C. elegans, D. rerio, and D. melanogastor as compared to 26% for S.
cerevisiae, and 21–23% for plants (Fig. 3A). More than 90% of the
methylation sites were predicted inside the IDRs in Mediator sub-
units of C. elegans and D. melanogaster (Fig. 3B). A similar pattern
was observed in plants with 98% and 85% methylation sites inside
the IDRs of A. thaliana and O. sativa respectively (Fig. 3B). In S. cere-
visiae, 58% of glycosylation sites were predicted inside the IDRs
(Fig. 3B).

We found most of the Mediator subunits with 2–6 acetylation
sites per 100 amino acids. In most metazoans and plants, Med19
was found with the maximum number of acetylation sites (11)
per 100 amino acids (Supplementary Sheet 2.4). Also, the number
of glycosylation sites per 100 amino acids for most Mediator sub-
units was found between 2 and 8. Notably, Med1 of metazoans,
Med3 of fungi, and Med35 of plants had more than 12 glycosyla-
tion sites per 100 amino acids (Supplementary Sheet 2.4). There
were not many methylation sites in Mediator subunits (Supple-
mentary Sheet 2.4).

In most metazoans and fungal species, Mediator subunits had
very few phosphorylations sites in the range of 1–6 serine/thre-
onine/tyrosine per 100 amino acids as compared to plants which
had 1–14 phosphorylation sites every 100 amino acids. In most
plants, Med13 had the maximum number (17) of serine sites per
100 amino acids, and Med22 had a maximum number (21) of tyr-
osine sites per 100 amino acids (Supplementary Sheet 2.4).

The Post-Translational Modification (PTM) sites (acetylation,
glycosylation, methylation, and phosphorylation) were also identi-
fied in MoRFs. We performed this analysis on eight model organ-
isms viz. C. elegans, D. rerio, G. gallus, H. sapiens, and D.
melanogaster for metazoans; S. cerevisiae for fungi; A. thaliana and
O. sativa for plants. We found 25%, 43%, and 16% of the total num-
ber of methylation sites in MoRFs for H. sapiens, O. sativa, and A.
thaliana Mediator complex respectively (Supplementary Sheet
2.5). We could not find a significant number of acetylation, glyco-
sylation, and phosphorylation sites overlapping the MoRFs (Sup-
plementary Sheet 2.5).
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3.3. MedProDB: an interactive database of Mediator proteins

The MedProDB is an interactive database of Mediator proteins
having information on various properties of the Mediator subunits.
As of today, the MedProDB consists of 33,971 Mediator protein
sequences belonging to 331 metazoan species, 658 fungal species,
and 123 plant species. Kingdom-wise distribution of Mediator sub-
units sequences, and their respective modules are summarised on
the ‘Statistics’ page of the database. The data stored in the Med-
ProDB database are organized at different levels. At the foremost
level, the user can search the database by entering simple key-
words such as Mediator subunit name, Uniprot ID, Mediator mod-
ule, species (head, middle, tail, or kinase), or by making user-
defined query combinations. The desired information is displayed
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in a tabular form as per the number of fields selected by the user
for the output. At the result page, the user can also search for the
desired term in real-time by typing the keywords in the search
box provided above the table. Secondary information can be
accessed by clicking on the MedDB id (unique ID given to each
entry of the database) provided in the table. For each Mediator sub-
unit sequence, this page provides information on the physicochem-
ical properties, sequence alignment, function, interactions,
diseases, repeat regions, Intrinsically Disordered Regions (IDRs),
and Molecular Recognition Features (MoRFs). Users can perform
a ‘BLAST’ search of that particular Mediator sequence with the
database at MedProDB. At the tertiary level, users can also click
Uniprot IDs, GO term links, information of published literature
(PubMed IDs), IntAct IDs, and species ID hyperlinks to access fur-
ther information of that particular Mediator sequence. All the
information provided can be downloaded as per the requirement
of the user.

3.4. MedProDB web-interface features

MedProDB provides three user-friendly ‘Search’ options viz.
‘Global Search’, ‘Simple Search’, and ‘Advanced Search’ to search
Mediator subunit information by using different types of key-
words. At the home page, ‘Global Search’ can be used to search
the database by using any search term raltead to function (e.g.
Embryo development, ATP binding, Prostate cancer etc.), Uniprot
ID, and organim name, Mediator Subunit, and kingdom etc. It pro-
duces the results as a list of Mediator subunits associated with the
query. The ‘Simple Search’ option facilitates the user to fetch Medi-
ator subunit information by providing different search terms like
Mediator subunit name, module, Uniprot ID, etc. The user can
select a specific field by a click on the radio buttons provided,
and then typing the search term in the text box. Further, user have
to select the fields to be displayed on the results page by clicking
on the check-box provided. An organism filter has been provided
if the user needs the desired information for a particular organism.
To provide flexibility, two options i.e. ‘Containing’ and ‘Exact’ have
been incorporated for search terms.

Suppose, if someone is interested in Med10 of ‘Arabidopsis thali-
ana’, then she/he has to click on the ‘Name’ radio button followed
by writing ‘Med100 in the text box. To select ‘field to be displayed’,
user can select ‘All’ fields followed by selecting ‘Arabidopsis thali-
ana’ in ‘Select Organism’ option. Afterwards, a click on ‘Search’ but-
ton will provide all the results on Mediator complex subunit
‘Med100 of ‘Arabidopsis thaliana’. The user can click on MedDB ID
of any of the desired sequence, and the webpage displays further
information on the selected sequence like physicochemical proper-
ties, alignment with seed sequences, IDRs, MoRFs, and also an
option to run BLAST search. The ‘Advanced Search’ option provides
the facility to make the user-built query using up to 11 different
combinations of keywords. The keywords (e.g. Mediator subunit,
module, Uniprot ID, etc.) can be used together or searched alterna-
tively or excluded using ‘add’ and ‘remove’ options. The conditional
operators viz. ‘=’, ‘Like’ and ‘!=’ and two logical operators ‘OR’ and
‘AND’ can be used as per the requirements of the user. The ‘Browse’
section enables the user to browse the database by the following
categories: ‘Name’ (Med1, Med2, etc.), ‘Kingdom’ (metazoans,
fungi, viridiplantae, and their respective sub-categories), and ‘Posi-
tion’ (head, middle, tail, kinase, and unknown). ‘PTM’ section pro-
vides ‘Glycosylation’, ‘Methylation’, ‘Acetylation’, and
‘Phosphorylation’ pre-calculated values of Mediator subunit
sequences of 8 Model organisms and links of PTM tools have been
provided for the user.

The ‘Tools’ section of MedProDB facilitates the user to analyse
their sequences for Mediator-like features by providing input
query to the following tools: ‘SW Align’, ‘BLAST’, ‘IUPred’ and
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‘MoRF-CHiBi’ [50,51,62,63]. ‘SW Align’ can be used to align the
query sequence with Mediator sequences available in the Med-
ProDB. This option helps the user to identify, and characterize their
sequence of interest. Here, we have incorporated the ‘WATER’ util-
ity of the EMBOSS-6.6.0 package that follows the Smith-Waterman
Algorithm [62]. ‘IUPred’ [50] uses an algorithm for predicting dis-
ordered regions in amino acid sequences by estimating their total
pairwise inter-residue interaction energy, based on the assumption
that IUP (Intrinsically Unstructured Proteins) sequences do not fold
due to their inability to form sufficient stabilizing inter-residue
interactions. This tool also has built-in parameter sets, optimized
for predicting short or long disordered regions. Submitting the
input protein sequence will give an output of a dynamic graph dis-
playing the disorder value for each residue of the input protein on
the Y-axis and residue position on the X-axis. Users can also down-
load the results in raw text format as well as in various other for-
mats. MoRFCHiBi [51] predicts Molecular Recognition Features
(MoRFs) within longer disordered protein regions that bind to
globular protein domains in a process known as disorder-to-
order transition. This tool is useful for high-throughput predictions
and provides the result in a dynamic graph and different down-
loadable formats. ‘BLAST’ module is helpful to find the regions of
similarity between the user-provided FASTA protein sequences,
and MedProDB sequences using BLASTP with the option to change
the Expect value (E-value). The respective ID(s) of sequences from
MedProDB producing significant alignments with the query
sequences are further hyperlinked to display their detailed
information.

The ‘Method’ section explains the pipeline designed for the
identification of Mediator sequences, physicochemical properties,
Intrinsically Disordered Regions (IDRs), Post-translational Modifi-
cation (PTM) sites, and Molecular Recognition Features (MoRFs).
The ‘Statistics’ page graphically represents the total and unique
Mediator sequences incorporated in MedProDB based on subunits
and Kingdom type. The ‘Help/Guide’ section is useful for the user to
understand the MedProDB database and use it effectively.

3.5. MedProDB usage

3.5.1. Case study I
MedProDB can be used to find the role of Mediatiors in any

specific Biological process, function, and disease. For instance, fol-
lowing is a case study designed to demonstrate the use of this
important database.

We performed the analysis of Mediator subunits associated
with ‘‘ATP binding”. For this, we searched the term ‘‘ATP binding”
on the ‘Global Search’ section available at the homepage of this
database. A list of Mediator subunits associated with ‘‘ATP binding”
is shown in the Fig. 4. The Venn diagram displays in the Fig. 4
shows the common Mediator subunits related to ‘‘ATP binding”
across three kingdoms (e.g. Metazoa, Fungi, and Plant or
Viridiplantae). The results shows that CDK8, Med15, Med19,
Med22, and Med23 are common in metazoa and viridiplantae;
CDK8, Med12, Med15, and Med27 are common in metazoa and
fungi; and CDK, Med13, Med15 and Med16 are common in
viridiplantae and fungi. The CDK8 and Med15 were found to be
common in all kingdoms for ‘‘ATP binding”. We have selected three
species across three kingdoms, and observed the details of CDK8
subunit. Further investigation of CDK8 of metazoa Clonal raider
ant (MDP00228), fungus Aspergillus ruber (MDP00093), and
viridiplantae Erythranthe guttata (MDP00125), showing that the
sequence alignment of these Mediator subunits are not good
among themselves but the pattent of disorder tandancy (Fig. 4) is
very much similar. This explains the conserved ‘‘ATP binding” func-
tion of CDK8 across three kingdoms. We have also vaified the ATP
binding fuction of CDK8 (reviewed proteins with litrarure evi-



Fig. 4. Global Search results for the term ‘‘ATP binding”. (A) Shows list of Mediator subunits obtained associated with ‘‘ATP binding”. Selected metazoa Clonal raider ant
(MDP00228), fungus Aspergillus ruber (MDP00093), and viridiplantae Erythranthe guttata (MDP00125) for further analysis. The Venn diagram displays Mediator subunits
intersections between metazoan and fungi, metazoan and viridiplantae, fungi and viridiplantae, and common Mediator subunits for all three kingdoms. Disorder Tendency
and Molecular recognition Feature score in, (B) Aspergillus ruber (MDP00093), (C) viridiplantae Erythranthe guttata (MDP00125), and (D) metazoa Clonal raider ant
(MDP00228).
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dence) at Uniprot manually by giving the Uniprot IDs P49336,
Q8R3L8, and Q9VT57 etc.
3.5.2. Case study II
Here, we wanted to analyze the Mediator subunits of humans

related to specific types of cancer. We searched ‘‘lung cancer”,
‘‘gastric cancer”, ‘‘prostate cancer”, ‘‘colorectal cancer”, and ‘‘breast
cancer” in the global search section. We obtained the list of Medi-
ator subunits associated with these cancers in the MedProDB. We
found CDK8, CycC, and Med12 were related to ‘‘colorectal cancer”;
CDK8, Med1, Med12, Med19, and Med23 were related to ‘‘lung
cancer”; Mediator subunits CDK8, Med10, and Med19, were associ-
ated with ‘‘gastric cancer”; CDK8, Med12, and Med19 were found
to be associated with ‘‘prostate cancer”; and CDK8, Med1,
Med12, Med13, Med14, Med19, and Med28 were associated with
‘‘breast cancer”. In these five types of cancers, CDK8 was found
to be associated with all types, and Med12 was associated with
four types of cancers. Details of CDK8 of human is shown in the
Fig. 5.
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These case studies explains the importance of this database to
explore any specific Biological process, function, and disease.
4. Discussions

The gigantic multi-protein Mediator complex plays a key role in
the process of transcription in all eukaryotes. It relays signals
from transcription regulators to RNA polymerase [64,65]. Besides
transcription initiation, Mediator is involved in the elongation of
transcripts, gene looping, splicing of the primary transcript, and
termination of transcription. Mediator subunits are also associated
with variety of disorders/diseases in humans including cancer
[9,66]. Mediator complex structure is similar in different organ-
isms but it can accommodate kingdom-specific proteins like tran-
scription factors and cofactors [58,67,68]. It has evolved as a highly
flexible protein complex so that it can interact with a diverse group
of other proteins and complexes [69]. We have created HMM pro-
files of Mediator subunits separately for three kingdoms, collected,
and compiled all the sequences into our database. The length,
molecular weight, aromaticity, instability index, pI, functions,



Fig. 5. Details of Mediator subunit CDK8 (MDP26070) of humans at MedProDB.
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interactions, diseases, alignment to respective subunit domains,
IDRs, and MoRFs values were included for each Mediator subunit.
The information (e.g. Aromaticity, Grand average of hydropathy,
Instability index, Isoelectric point, and Molecular weight) provided
on this database may provide new insights on Mediator subunits.
Aromatic interactions have a significant role in the context of sta-
bility, folding, self-assembly processes, and molecular recognition
[70,71]. Aromaticity can decide Mediator protein’s ability to inter-
act with other proteins/drugs, through side-chain interactions of
aromatic amino acids [71]. The instability index gives a proteins’
stability/half-life in a test tube [49]. The Grand Average of
Hydropathy (GRAVY) values will facilitate the users to get informa-
tion on the Mediator subunit’s overall hydrophobicity and predict
subunit’s solubility in water. This can be useful while desiging
experiments for purification of a Mediator protein and its further
resolution on 2D gel electrophoresis and similar techniques. The
biochemical function of proteins are well determined by their
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molecular weight and pI values [72]. Therefore, it is important to
understand the details regarding molecular weight and pI of Medi-
ator subunits. This parameter can be handy during purification of
Mediator protein by using techniques like ion-exchange, pH-
graded gel, and other electro-focusing systems. This will further
help in characterizing the function, structure, and interaction of
Mediator subunits. Alignment of subunit sequence with the seed
sequences from which HMM profiles of Mediator subunit were
constructed, will help researchers identify regions of similarities
and dissimilarities. The information on annotated functions, inter-
actions, and diseases are provided, which will be very helpful for
biologists. The repeat regions are internal duplications of different
varieties. The repeat regions can be helpful in identifying new
domains and motifs in Mediator proteins [47]. The diseases related
to Mediator subunits of humans available on MedProDB can be
helpful in disease pathology, pathways, drug target identification,
and drug discovery. The IDRs and MoRFs can be visualized on an
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interactive graph, to which users can identify disordered regions,
regions involved in interactions, and their correlation. Primary
amino acid sequences of Mediator subunits were found to be con-
served in closely-related species, but they are less conserved in far-
related species. Instead, it was observed in our previous study that
the position of disordered regions is conserved in all kingdoms [5].
Thus, even if there is no significant sequence similarity, the prop-
erties related to disorderness might be well conserved. We have
observed the same trend in this study of large scale datasets.

Additionally, Post Translational Modifications (PTMs) of eight
model organisms are provided on the ‘PTM’ tab, for all Mediator
subunit sequences fetched from the SwissProt database. Web-
links are also provided to PTM analyses tools [52,53,73,74]. Four
major tools are integrated into the database (SW Align, BLAST,
IUPred, and MoRF-CHibi Light) with which user can align query
sequence with MedProDB database sequences, and search for
sequence alignments, IDRs, and MoRFs in the query sequence.

All the aforementioned properties incorporated in MedProDB,
and will be helpful for the bioinformaticians, and experimental
biologist in accelerating evolutionary, functional, interaction, and
structural studies of Mediator subunits.

5. Future extensions

As large number of protein sequences are being uploaded on
various protein databases, we will keep on identifying putative
Mediator subunits, generate all the necessary information, and
upload them at MedProDB. We will continuously curate Mediator
protein information based on published literature. We will incor-
porate visualization and analysis tools to the MedProDB to make
Mediator protein analysis more flexible.

6. Conclusion

MedProDB is a web-based repository dedicated to Mediator
proteins for three Kingdoms (metazoans, fungi, and plants). It con-
sists of 33,971 in-silico identified Mediator protein sequences, their
relevant information like length, mass, aromaticity, hydrophobic-
ity, stability, isoelectric points, functions, interactions, repeat
regions, diseases, IDRs, and MoRFs. Various options are provided
for the user to explore the database. In addition to this, different
tools for the analyses of sequences are also provided. This database
is the first of its kind, i.e. world’s first Mediator protein database.
The MedProDB will be a useful resource for the researchers
engaged in understanding the process of transcription regulated
by the gigantic multiprotein Mediator complex.
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