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Abstract: During evolution, both human and plant pathogens have evolved to utilize a diverse range
of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources
utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence
genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and
pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania
donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also
a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting
its possible role in cell signaling. Over the last few decades, many studies have been performed
to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in
pathogenesis in order to identify new drug targets. In this review, we provide recent insights into
GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic
pathway can be targeted to reduce the pathogens’ virulence in order to control the disease prevalence
and crop productivity.

Keywords: N-Acetylglucosamine; pathogens; virulence; colonization; NAG1; DAC1; HXK1; NGT1;
chitin; plant immunity

1. Introduction

Pathogens have developed numerous strategies for successful host colonization, which
depends upon their ability to cope with a poor nutritional environment for the pathogens
and stressful conditions inside the host. The pathogenesis mechanism involves multifarious
parallel metabolic pathways, complex gene regulatory network systems, and stress adaptive
mechanisms to survive inside the host [1]. During infection, many human pathogens
target phagocytic cells, especially macrophages [2]. In the defense mechanism against
pathogens, macrophages apply several stress mechanisms like oxidative and nitrosative
stress to kill the pathogens [3]. Pathogens evade this host defense mechanism to reach the
parasitophorous vacuole. To restrict the growth of phagocytosed pathogens, phagocytic
cells maintain a low level of glucose inside their parasitophorous vacuole (PV) [2]. PV
has a nutritionally poor and stressful environment. One of the adaptative strategies that
evolved in pathogens is their capability to utilize a diverse range of carbon sources for their
survival under hostile environments [1]. Under these circumstances, the parasites living
inside the PV depend heavily on the amino sugars present inside the PV. Amino sugars
(N-acetylglucosamine and Glucosamine) are a major class of non-conventional sugars
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consumed by pathogens in the absence of conventional carbon sources. Therefore, the
utilization of N-acetylglucosamine (GlcNAc) as a carbon source under hostile conditions
is an important adaptive mechanism found in many human pathogens [4–7]. Most of the
cells could not synthesize non-phosphorylated GlcNAc. Therefore, GlcNAc is synthesized
de novo either, in the form of GlcNAc-6-P or GlcNAc-1-P, inside the cell. Hence, the free
form of GlcNAc is never expected inside the cell unless it is taken up from the outside
source. Prokaryotes synthesize GlcNAc-1-P, while eukaryotic cells synthesize GlcNAc-
6-P [8]. Accordingly, depending upon the phosphorylation or non-phosphorylation of
GlcNAc, cells distinguish between the endogenous and exogenous GlcNAc.

In plants, pathogenic fungi, which severely affect crop production, change the host
metabolism upon fungal invasion [9–14]. Fungal pathogens either kill the host cells to
get nutrients by consuming the dead tissues in a necrotrophic or establish a long-term
feeding association with the host instead of killing the host cells in a biotrophic interaction
fashion [15–18]. During pathogenesis, the host cell death or hypersensitive response is
caused by reactive oxygen species (ROS) and used by the host as a defense tool against
biotrophic pathogens. The hypersensitive response-mediated cell death or resistance
against biotrophs can result in increased susceptibility against necrotrophic pathogens
and vice versa [19,20]. Thus, hosts employ different defense strategies depending on the
nature of pathogens [21–23]. The fungal cell wall contains chitin, a GlcNAc polymer, and
is synthesized by chitin synthases using UDP-GlcNAc, generated from different sugars.
Chitin is broken down into its monomers during fungal cell wall remodeling [8]. Therefore,
GlcNAc is an important component during chitin metabolism, cell wall remodeling, and
host colonization by fungal pathogens.

In this review, we provide recent insights into GlcNAc sensing and signaling mech-
anisms in different human and plant pathogens. We discuss how the GlcNAc metabolic
pathway has been targeted to reduce the virulence of these severe pathogens using different
molecular genetics, biotechnology, and genome engineering tools. Moreover, the prospects
of GlcNAc and its metabolic pathway genes as tools for drug discovery and plant immunity
have also been discussed.

2. GlcNAc: A Ubiquitous Amino Sugar and Signaling Molecule

The ubiquitous presence of the GlcNAc makes it among the most abundant sugars on
Earth. GlcNAc is present in almost all life forms present on Earth, such as archaebacteria,
mycoplasma, bacteria, fungi, plants, and animals [8]. GlcNAc has a diverse role in different
biological processes, as shown in Figure 1. GlcNAc is particularly known for its structural
role in distinct cell types across living organisms. In bacteria, GlcNAc provides structural
support by forming the backbone of the cell wall in the form of peptidoglycan [8,24].
In fungi, GlcNAc provides structural support in the form of chitin [8]. In multicellular
organisms, the intercellular space is packed with an organized meshwork of extracellular
matrix. It provides structural and biochemical support to the cells. The extracellular matrix
contains a wide range of sugar polymers like glycosaminoglycans, heparin sulfate, and
keratin sulfate [25]; most have GlcNAc as a monomer. Among these macromolecules,
glycosaminoglycans form a major part of the extracellular matrix in humans. Besides
the extracellular matrix, GlcNAc is also abundantly present at mucosal sites like the
gastrointestinal tract and vaginal and oral thrush [26]. These mucosal sites are often the
site of entry inside the body for several pathogens. Several pathogens, including C. albicans,
colonize the mucosal membranes of the GI tract, oral cavity, and vaginal thrush (Figure 2;
Table 1) [27,28]. GlcNAc is also present in plants, albeit in trace amounts. However, it
is mainly found in the form of glycosylated proteins [29]. In plants, many studies have
shown that different free N-glycans in the common core (Man3Glc NAc2) regulate various
biological processes [30–34]. Plant membrane sphingolipids, e.g., glucosamine inositol
phosphorylceramide, also contain GlcNAc and are involved in cell-cell adhesion [35].
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Figure 1. Diverse roles of GlcNAc. The GlcNAc plays a key role in pathogenesis and provides a 
survival advantage to the pathogens in the host. The chemical structure of GlcNAc (PubChem CID 
439174) retrieved on 19 January 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/N-Acetyl-
D-Glucosamine. 

 
Figure 2. Pathogen infection at mucosal membrane: Mucous membrane is rich in glycosylated pro-
teins. Several pathogens such as Candida albicans, E. coli, Salmonella spp., Vibrio cholerae, etc., exploit 
GlcNAc released from glycoproteins at the mucosal membrane. 

Figure 1. Diverse roles of GlcNAc. The GlcNAc plays a key role in pathogenesis and provides a
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Table 1. Microorganisms and associated host cell surface protein and pathogen infection at mucosal
membrane. Mucous membrane is rich in glycosylated proteins and several pathogens, such as Candida
albicans, Escherichia coli, Salmonella, Vibrio cholerae, etc., exploit glycoproteins at the mucosal membrane.

Microbes Cell Surface Protein Organ/Tissue Disease References

Helicobacter pylori Mucin 5AC (MUC5AC) Gastric mucosa Peptic ulcers [36]

Vibrio cholerae
N-acetylneuraminic acid

(Neu5Ac) and
N-acetylglucosamine (GlcNAc)

Small intestine Cholera [37]

Salmonella enterica MUC1 Intestinal epithelial cells Typhoid [38]

Leishmania species Neuraminidase 1
(NEU 1) Skin, spleen, and liver Leishmaniasis [39]

Toxoplasma gondii Spleen, lung, etc. Toxoplasmosis [40,41]
Enterotoxigenic
Escherichia coli MUC2 Large intestine Noninflammatory

Diarrheas [42]

Candida albicans Msb2 Mouth, throat, gut,
and vagina Candidiasis [43,44]

Akkermansia muciniphila Gastrointestinal mucin Gastrointestinal tract - [45,46]
Clostridioides difficile O-glycan mucin Gastrointestinal tract Diarrhea [47]
Staphylococcus aureus Nasal mucin Brain, heart, and lung Pneumonia and Meningitis [48,49]

During infection, pathogens secrete a huge amount of hyaluronidases to release the
GlcNAc present in the mucosal membrane and ECM [7]. This GlcNAc is used as a carbon
source by pathogens during the initial penetration of the human body. Hyaluronidase
secretion also stimulates the recruitment of the phagocytic cells to the site of infection.
Pathogens are then taken up by macrophages. Inside the macrophages, these pathogens
end up being inside the phagolysosomal compartment. These compartments are acidic and
rich in hydrolytic enzymes [50]. These phagolysosomal compartments regularly receive
waste macromolecules of the cells like glycoproteins, proteoglycans, and glycolipids [1,2,51].
These macromolecules are then degraded by the hydrolases to release the GlcNAc. Since
macrophages regularly maintain low glucose levels, pathogens depend heavily upon the
GlcNAc released from macromolecules. Therefore, the ubiquitous presence of GlcNAc
from the cell surface to the extracellular matrix to the inside of the cell makes it one of the
most important sugars for the pathogen. Moreover, numerous proteins in the cytoplasm
and nucleus are also regulated by GlcNAc, probably at serine and threonine residues
(O-GlcNAc) by the O-GlcNAc transferase [52]. GlcNAc is also reported as an inducer of
Candida albicans morphological plasticity (yeast to hyphae transition), a pathogenic trait
as the hyphal form has significant roles in the infection process [53]. To understand this,
various proteomics approaches have been employed, and many GlcNAc-regulated protein
and phosphoproteins involved in morphological transition were identified [54,55].

There is growing evidence that GlcNAc acts as an intracellular signaling molecule
in signaling pathways that impact the virulence and survival of the pathogens in hosts
such as Candida albicans [24,56]. The first report of GlcNAc as a signaling molecule was
reported in the human fungal pathogen C. albicans. GlcNAc induces the switching of the
budding yeast form to the filamentous hyphal form in C. albicans [53]. This switching in
morphology is c-AMP-mediated. Later, this role of GlcNAc-induced morphogenesis into
the filamentous form was discovered in several other fungal pathogens. Hyphal forms
of fungus show invasive growth in hosts. GlcNAc also induces several genes (aspartyl
proteases, phospholipases, adhesins, etc.) involved in the virulence and biofilm formation
in C. albicans [8]. Besides providing the energy, GlcNAc catabolism plays a vital role in
raising the pH of the acidic phagolysosome, thereby providing the ambient pH for its
survival [57]. GlcNAc also induces the galactose metabolic pathway in C. albicans, which is
very unusual as both catabolic pathways do not overlap [58].

In bacterial pathogens, GlcNAc regulates several virulence factors. In E. coli, GlcNAc
downregulates the expression of the fimbriae and curli fibers, which are important virulence
determinant factors [8]. GlcNAc also regulates the production of secondary metabolites
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in bacteria. Production of antibiotics by the soil bacteria and phenazine (antimicrobial
compound) by P. aeruginosa is induced by the GlcNAc-mediated signaling [8]. In pathogenic
bacteria, Listeria monocytogenes flagellar motility is modulated by the O-GlcNAcylation of
the flagellar protein [59]. In the mammalian system, GlcNAc is a major constituent of the
ECM. GlcNAc is released during the remodeling of ECM or the parasitic infection through
hyaluronidases; a significant amount of GlcNAc is released, which acts as a signaling
molecule for both mammalian cells and parasites [7]. Several mammalian cell surface
proteins regulate the cell signaling pathways by altering the pattern of N-glycosylation.
GlcNAc has also been found to influence the mammalian immune cells. GlcNAc inhibits
the T-cell response. The Th1 and Th17 cell-response against the fungal defense is inhibited
by GlcNAc [60]. Not much is known about GlcNAc inhibition of the T-cell response.

Depending upon the metabolic requirements of the cells, GlcNAc can either enter
the catabolic pathway for energy generation, or it can enter the anabolic pathway for the
biosynthesis of other cellular metabolites. Amino sugars are required for the biosynthesis
of a wide range of surface glycoconjugates and N-glycosyl modification of proteins. This
role of amino sugars is well established from lower prokaryotes to higher eukaryotes [8].
GlcNAc can be converted to UDP-GlcNAc, and this UDP-GlcNAc is used by the cell
for the biosynthesis of several glycoconjugates like glycosylphosphatidylinositol (GPI),
dolichol-linked oligosaccharides (DLO), gp63, PSA2, LPG. UDP-GlcNAc is also essential
for the glycosylation of proteins. The biosynthesis of UDP-GlcNAc is also crucial for
the survival of several pathogens. UDP-GlcNAc biosynthesis is critical for the survival
of Trypomastigote—the bloodstream form of T. brucei [61]. UDP-GlcNAc synthesis is
important for the intracellular survival of Mycobacteria tuberculosis [62]. In many bacterial
and fungal pathogens, UDP-GlcNAc acts as a GlcNAc donor for the cell wall synthesis and
glycosylation of proteins [8].

3. Universality of GlcNAc Catabolic Pathway and Genes in Human and
Plant Pathogens

Various studies demonstrate that the GlcNAc catabolic pathway is evolutionary con-
served in human and plant pathogens (Figure 3). The genes of the GlcNAc catabolic
pathway have been identified in human bacterial pathogens such as Mycobacterium, Vibrio
cholerae, yeast ascomycetes, filamentous ascomycetes, basidiomycetes and zygomycetes
fungi, and protozoan parasites [1,4,52,63]. Similarly, the genes involved in GlcNAc utiliza-
tion are identified in the genomes of several phytopathogenic fungi, including M. grisea,
Gibberella zeae, Ustilago maydis, Sclerotinia sclerotiorum,, Botryotinia fuckeliana, Pyrenophora
tritici-repentis, Cochliobolus heterostrophus, Mycosphaerella fijiensis, Nectria haematococca, and
Aspergillus niger [64,65]. This unique nature of the GlcNAc catabolic pathway suggests
an important role of the gene cluster in pathogenesis. In pathogens, including V. cholera,
C. albicans, and M. oryzae, the GlcNAc catabolic pathway genes are present as a cluster
in an operon [52]. In C. albicans, GlcNAc catabolic pathway genes are clustered together
on chromosome 6 [52]. However, in protozoan parasites, like L. donovani, these genes are
present on separate chromosomes [1,2].

Free GlcNAc is released by the glycosidases, such as is taken up the bacterial cells
through their phosphotransferase system (PTS), while eukaryotes have specific trans-
porters for the GlcNAc [8,66]. For pathogens such as C. albicans, M. oryzae has Ngt1 for
GlcNAc import (Figure 3). Inside the eukaryotic cells, three enzymes, namely: hexoki-
nase (HXK), N-acetyl glucosamine-6-phosphate deacetylase (DAC), and glucosamine-6-
phosphate deaminase (NAG), function in a sequential manner in the catabolism of GlcNAc
(Figure 3) [8,52,65]. These three enzymes are highly conserved in pathogens. GlcNAc is
phosphorylated by HXK to form N-acetylglucosamine-6-phosphate (GlcNAc-6-P) [7,8,52].
GlcNAc-6-P is then deacetylated by DAC to form the glucosamine-6-phosphate (GlcN-
6-P) [52,65]. Further, GlcN-6-P is deaminated and isomerized by NAG to form fructose
6-phosphate [52,65]. Fructose-6-phosphate is a common metabolic intermediate having
multiple fates, which can be used for generating the energy requirement of the cell [8,52,65].
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In most pathogens, GlcNAc catabolism closely follows the glycolytic pathway. Therefore,
the GlcNAc catabolism takes place in the cytoplasm of the cell. However, in pathogens,
like Leishmania, Trypanosoma glycolytic enzymes are localized in glycosomes. Thus, in these
pathogens, GlcNAc catabolism takes place in glycosomes [1,2].
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4. Engineering GlcNAc Catabolic Pathway for Reducing the Virulence of
Human Pathogens

Genetic engineering of human pathogens has contributed significantly to our under-
standing of human health and diseases. Since the emergence of knockout strategies, they
have been the most commonly and widely used method for establishing an understanding
of human pathogens. The emergence of more efficient knockout generation technologies,
like CRISPR, has contributed considerably to the genetic engineering of pathogens [67].
C. albicans was among the first human pathogens in which the GlcNAc metabolic pathway
was thoroughly studied, and Bhattacharya et al. [68] first reported that the presence of
GlcNAc is essential for the induction of GlcNAc kinase. Further, several other GlcNAc-
regulated metabolic enzymes, such as permease, GlcNAc-6-P deacetylase, and GlcNAc-6-P
deaminase in spheroplasts of C. albicans, were studied [69]. Moreover, Kumar et al. [70]
reported that in C. albicans, GlcNAc catabolic genes (NAG1, DAC1, and HXK1) exist as a
cluster and are under transcriptional activation in response to a single inducer GlcNAc [70].
Interestingly, this NAG cluster contains NAG1 and DAC1 genes in opposite orientations,
indicating the possibility of a bidirectional promoter [70]. The role of the GlcNAc catabolic
pathway in virulence and pathogenesis was first established in C. albicans through the gen-
eration of several knockouts [28]. Disruption of the NAG operon of C. albicans by deletion of
DAC1, NAG1, or HXK1, results in the generation of strain, which has attenuated virulence
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and pathogenesis [27,28]. Emerging data indicate that GlcNAc is utilized and sensed by
a broad range of pathogens. The ubiquitous presence of GlcNAc and its role in inducing
the virulence factors in many fungal and bacterial pathogens suggest the much-needed
attention this pathway requires in several important human and plant pathogens.

After the establishment of the fact that the GlcNAc catabolic pathway is essential for
the virulence and pathogenesis of C. albicans, this pathway was explored in other human
pathogens. In Vibrio cholerae, two copies of DAC and GlcNAc kinase were identified, and
an N-acetylglucosamine-specific repressor (NagC) performs dual functions by regulating
classical GlcNAc catabolic pathway genes negatively and second copies of these genes
positively. The null mutants of GlcNAc catabolic pathway genes showed attenuated
virulence and pathogenesis during intestinal colonization. GlcNAc catabolic engineering
approach was further exploited in a protozoan parasite Leishmania donovani. The ∆nagd
mutant of Leishmania donovani showed impaired GlcNAc catabolism and was reported
as indispensable for the viability of L. donovani in media containing GlcNAc as the sole
carbon source [1]. Moreover, ∆nagd mutant exhibited attenuated virulence and reduced
proliferation rate in THP-1 cells as compared to wild type [1]. Recently, null mutants of
the GlcNAc catabolic pathway were also created in several other human pathogens such
as S. mutans, Mycobacteria, Salmonella, etc., which also exhibited attenuated virulence and
pathogenesis [6,48,49,71].

5. GlcNAc Metabolic Engineering for Reducing the Virulence of Plant Pathogens

Similar to vertebrates and other animals, plants also interact with pathogens; how-
ever, plants do not have specialized immune cells. To combat this, plants have evolved
intracellular immune receptors to recognize the presence of pathogen-associated molec-
ular patterns (PAMPs) [72–74]. Bacterial and fungal cell-derived N-acetylglucosamine
biopolymer is among the PAMP molecules that activate pattern-triggered immunity (PTI)
in plants (Figure 4) [75]. Chitin, a polymer of GlcNAc and structural component of the
fungal cell wall, triggers two major lysin motif receptor-like kinases, AtLYK5 and AtCERK1,
in Arabidopsis [76]. AtLYK5 has a higher binding affinity to chitin than AtCERK1. Research
studies show that chitin treatment activates the formation of tetramer complex, which
further activates the chitin-triggered immunity in plants [77,78].

During the establishment of disease in plants, pathogen (microbe) and host (plant)
interactions are tightly regulated at the molecular level. This pathological interaction
not only hampers plant growth but also obstructs reproduction. It is important to know
that to synthesize cell surface structures in bacteria, GlcNAc plays an important role.
On entering the glycolytic pathway, GlcNAc could supply both carbon and energy as it
can be converted into fructose-6-phosphate [50,51]. Kashulin et al. performed a study
on tissue cultured potato cells with a fluorescent dye 2′,7′-dichlorofluorescein diacetate
to understand the outcomes of polyunsaturated fatty acids together with GlcNAc and
reported rapid generation of H2O2 in the cells [79]. This rapid (within 2–10 min) spur of
free radicals may be associated with a plant safeguarding approach domineering a plant-
pathogen collaboration. To combat such pathogenic assault, many plants have developed
defense proteins, which contain ‘hevein domain’ or ‘chitin-binding’ motif, and are skilled
in reversible binding to polysaccharide chitin, a long-chain polymer of GlcNAc, present in
the cell wall of fungi [80]. Asensio et al. employed various biochemical and spectroscopic
approaches to understand the interactions of GlcNAc oligomers with hevein and ultimately
established a structural foundation for detection of chitin by plant defense proteins [81].

Occurrence and/or omission of similar genes involved in plant resistance and pathogen
avirulence governs plant-pathogen interactions. Kooman-Gersmann et al. applied AVR9
mutant peptides to establish the association among elicitor activity of AVR9 peptides
and their affinity to bind tomato membranes [82]. Interestingly, they observed that N-
glycosylation plays an important role, as AVR9 peptides with N-glycosylation exhibited
a lesser affinity to the binding site than the non-glycosylated AVR9 peptides, while their
necrosis stimulating endeavor was barely altered [82,83]. Additionally, tomato pathogen
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Cladosporium fulvum manifests AVR4 to protect fungi against plant chitinases [84–86]. Fur-
ther, the importance of class V chitin synthase in safeguarding vascular wilt pathogen
Fusarium oxysporum against plant defense during host infection was also studied [87,88].
Jaroszuk-Ściseł et al. studied Fusarium isolates and their enzymatic complexes in the hy-
drolysis of the plant cell wall and/or fungal cell wall with distinctive assertiveness to Secale
cereale and established that a plant growth-promoting rhizosphere isolate was effective in
emancipating GlcNAc and reducing sugars from the cell wall of fungi [89,90].
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tering the glycolytic pathway, GlcNAc could supply both carbon and energy as it can be 
converted into fructose-6-phosphate [50,51]. Kashulin et al. performed a study on tissue 
cultured potato cells with a fluorescent dye 2’,7’-dichlorofluorescein diacetate to under-
stand the outcomes of polyunsaturated fatty acids together with GlcNAc and reported 
rapid generation of H2O2 in the cells [79]. This rapid (within 2–10 min) spur of free radicals 
may be associated with a plant safeguarding approach domineering a plant-pathogen col-
laboration. To combat such pathogenic assault, many plants have developed defense pro-
teins, which contain ‘hevein domain’ or ‘chitin-binding’ motif, and are skilled in reversible 
binding to polysaccharide chitin, a long-chain polymer of GlcNAc, present in the cell wall 
of fungi [80]. Asensio et al. employed various biochemical and spectroscopic approaches 
to understand the interactions of GlcNAc oligomers with hevein and ultimately estab-
lished a structural foundation for detection of chitin by plant defense proteins [81].  

Occurrence and/or omission of similar genes involved in plant resistance and patho-
gen avirulence governs plant-pathogen interactions. Kooman-Gersmann et al. applied 
AVR9 mutant peptides to establish the association among elicitor activity of AVR9 pep-
tides and their affinity to bind tomato membranes [82]. Interestingly, they observed that 
N-glycosylation plays an important role, as AVR9 peptides with N-glycosylation exhib-
ited a lesser affinity to the binding site than the non-glycosylated AVR9 peptides, while 
their necrosis stimulating endeavor was barely altered [82,83]. Additionally, tomato path-
ogen Cladosporium fulvum manifests AVR4 to protect fungi against plant chitinases [84–
86]. Further, the importance of class V chitin synthase in safeguarding vascular wilt path-
ogen Fusarium oxysporum against plant defense during host infection was also studied 
[87,88]. Jaroszuk-Ściseł et al. studied Fusarium isolates and their enzymatic complexes in 
the hydrolysis of the plant cell wall and/or fungal cell wall with distinctive assertiveness 
to Secale cereale and established that a plant growth-promoting rhizosphere isolate was 
effective in emancipating GlcNAc and reducing sugars from the cell wall of fungi [89,90].  

Figure 4. Chitin-triggered immunity in plants. Microbe-derived chitin activates the formation of
tetramer [AtCERK1(AtLYK5)2 AtCERK1] that phosphorylates the AtCERK1 at the same time. This
phosphorylation activates the PAMP-triggered immunity in plants [78].

Diverse soil microbes comprising symbionts and pathogens interact with plant roots,
which advanced receptors to sense microbe-derived molecules. This mechanism helps
plants to either allow the beneficial microbe to institute symbiosis or subsidize to decline a
pathogen to prevent plant disease. Among the receptors, plant lysin motif proteins, which
regulate the sensitivity of microbial-derived GlcNAc compounds, play a functional role
in deciding symbiosis or preventing plant disease. Rey et al. studied LysM-receptor-like
kinase mutants (nfp and lyk3) of Medicago truncatula and examined them by subsequent
inoculation with a root oomycete, Aphanomyces euteiches [91]. They found that nfp (Nod
Factor Perception) mutants show greater susceptibility to A. euteiches, while NFP overex-
pression enhances resistance to A. euteiches; however, they did not find any change in lyk3
(LysM domain receptor-like kinase 3) [91]. Further, the molecular basis for LysM modules
in recognizing polysaccharides containing GlcNAc residues from AtlA, an autolysin of
bacterial pathogen Enterococcus faecalis, was explored, and it was discovered that the LysM
module distinguishes that the GlcNAc-X-GlcNAc motif exists in polysaccharides through-
out all kingdoms [92]. Moreover, lysin motif receptors are also reported to be involved in
the perception of GlcNAc-based saccharides released by pathogenic fungi [93]. Nars et al.
reported the structural characterization and biological activity of atypical chitosaccharides
from A. euteiches on the host Medicago truncatula and found that expression of defense
marker genes is induced by glucan-chitosaccharide fractions of A. euteiches in Medicago [94].
Moreover, enhanced resistance from fungal pathogens by over-expressing chitinase genes
have been successfully engineered in crop plants such as Solanum lycopersicum, Solanum
tuberosum, Oryza sativa, Zea mays, groundnut, Brassica, finger millet, cotton, lychee, banana,
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Vitis vinifera, and wheat [95–98]. Furthermore, chitin-binding lectins (CBLs) are known
for their role in immune defense against chitin encompassing pathogens by displaying
antifungal properties as recombinant CBL in the 293F cell culture supernatant could inhibit
the growth of Rhizoctonia solani and Colletotrichum gloeosporioide [99]. Fungi are known
for their capability to secrete extracellular degrader enzymes with hydrolytic functions.
Barreto et al. suggest that GlcNAc has an important role in the secretion of extracellular
chitinase in Metarhizium anisopliae [100,101].

During host-pathogen interactions, the successful establishment of pathogens is
mostly dependent on accessibility and proficient consumption of host-derived nutrients
by pathogens. To better understand this, Kumar et al. characterized the GlcNAc catabolic
pathway genes such as GlcNAc transporter (MoNgt1), hexokinase, GlcNAc-6-phosphate
deacetylase (MoDac), and GlcN-6-phosphate deaminase (MoDeam) during phytopathogen
M. oryzae communication with host rice plant [65]. They proposed that GlcNAc supports
fungus by the antioxidant defense to astounded oxidative stress inside its host, while in
the impaired catabolic pathway, GlcNAc becomes toxic to the M. oryzae [65]. In line with
this work, Bhatt et al. acknowledged a conserved transcriptional regulator, Ndt80/PhoG, in
GlcNAc catabolic gene cluster in various fungi, including M. oryzae [64]. Interestingly, it
was reported that MoNdt80 is indispensable for GlcNAc utilization and successful coloniza-
tion and pathogenesis of M. oryzae in its host [64]. Other studies also support the role of
GlcNAc metabolism (in planta and in vitro) in Xanthomonas campestris, a causal agent of
black rot disease on Brassica [102–104]. To decode the molecular mechanism of Fusarium
oxysporum and its host during infection, López-Fernández et al. discovered the presence of
seven putative N-glycosyl transferase encoding genes named gnt [105]. The ∆gnt2 mutant
exhibited a decline in virulence on both plant and animal hosts, and the authors have
concluded that N-acetylglucosaminyl transferases are not only essential factors for cell wall
structure but also stimulus interactions of F. oxysporum [105,106].

Oligosaccharides with mixed linkages, β-1,3/1,4-glucan (β-1,3/1,4-MLG), are plenti-
fully found in bacteria, oomycetes, symbionts, pathogenic or non-pathogenic fungi, and
monocot plants. Barghahn et al. examined mutants of Arabidopsis innate-immunity signal-
ing as well as more than 100 Arabidopsis ecotypes and hypothesized that β-1,3/1,4-MLG
oligosaccharides contain the two-fold capability to perform as immune active microbe-
associated molecular patterns (MAMPs) and danger-associated molecular patterns (DAMPs)
in both monocot and dicot plants [107]. Additionally, Rebaque et al. suggested that MLGs
work as a cluster of carbohydrate-established molecular patterns and are noticed by plants
to initiation their immune reactions and disease endurance [108,109]. Furthermore, three
of the eight members of the LysM pattern recognition receptor (PRR) family, i.e., CERK1,
LysM domain receptor-like kinase-4 (LYK4), and LysM domain receptor-like kinase-5 (LYK5) are
involved in (GlcNAc)4–8 perception by Arabidopsis. Chitin Elicitor Receptor Kinase 1 (CERK1)
identifies bacterial peptidoglycan MAMPs and chito-oligosaccharides from fungi to work
as an immune co-receptor for linear 1,3-β-d-glucans [110].

6. Conclusions and Future Prospects

The emerging role of the GlcNAc catabolic pathway in different human and plant
pathogens establishes the importance of this pathway in pathogenic diseases. Due to
the continuous emergence of drug resistance among the parasites, there is a continuous
search for newer drug targets. Therefore, studies on GlcNAc metabolic pathway in various
human pathogens have provided the basis for new drug targets to manage microbial
diseases. Recently characterized GlcNAc pathway in phytopathogen M. oryzae suggests
the universality of this pathway in human and plant pathogens. Thus, it is clear that
GlcNAc is universally required for the in vivo survival and virulence of diverse human
and plant pathogens (Figure 1). With the technological advancement and genome editing
approaches such as CRISPR-Cas9, in the future, additional novel roles of GlcNAc as a
signaling molecule and GlcNAc engineering will continue to emerge in a diverse range of
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cell types. In the long term, enzymes and genes of the GlcNAc metabolic pathway could be
used for the drug targets for controlling various human and plant diseases.

An assessment of the infectious host-pathogen interaction model has shown the vir-
ulence and defense mechanisms related to GlcNAc engineering. Although, there is still
a scarcity in model pathosystems to examine GlcNAc function or GlcNAc perception by
the host during pathological interactions. Hence, imminent improvement in this field
will illustrate the critical role of GlcNAc signaling/perception during pathological interac-
tions and also extend the co-adaptation of the pathogen, subsequently allowing pathogen
invasion and host colonization. Indeed, such discernments will not only assist our un-
derstanding of advantageous versus disadvantageous communications but could also
encourage resistance breeding in the future. Therefore, when new carbohydrate-based
prospective DAMPs/MAMPs become accessible with the understanding of GlcNAc sig-
naling/perception, we may be able to raise crop varieties harboring specific plant pattern-
recognition receptors and also design agricultural approaches that would augment crop
disease resistance and modulate crop immunity.
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