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Abstract: In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose
(Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root
system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis
(Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various
nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in
facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of
KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated.
Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence
of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell
proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP
exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization
in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated
altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots.
Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and
nutrient-dependent auxin homeostasis in Arabidopsis.

Keywords: Arabidopsis; hydroponic system; KAuCl4; gold nanoparticles; sucrose; nutrients; auxin

1. Introduction

Nanomaterials with novel properties provide spectacular paradigms for a wide range
of applications in biological imaging, diagnostics, therapeutics, and sensors [1]. Among
metal-based nanomaterials, gold nanoparticles (AuNPs) are attributed to highly stable
electronic and optical properties, tunable size, and tailorable surface properties [2]. How-
ever, hazardous chemicals used for the synthesis of AuNPs contribute to environmental
toxicity [3]. Therefore, the green synthesis of AuNPs is an economically viable and eco-
friendly sustainable alternative [4]. Whole biomass or different parts of plants with a wide
variety of bioactive compounds have been employed in the rapid synthesis of AuNPs [5].
However, plant extracts are not suitable for determining the morphophysiological and
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molecular responses that are triggered during the synthesis of AuNPs. Therefore, the
in planta synthesis of AuNPs is a viable alternative [6]. X-ray absorption fine structure
(EXAFS) and X-ray absorption near edge structure (XANES) determine the oxidation state
of an element and the nearest neighboring atom [7]. In Sesbania drummondii seedlings, the
acquisition of Au3+ and its bioreduction to Au0 (AuNPs) were demonstrated by EXAFS
and XANES, as well as transmission electron microscopy (TEM)-localized AuNPs in the
root cells exhibiting a catalytic activity [8]. The function of AuNPs is determined by its
geometry, which can be tailored by altering growth conditions during the in planta synthesis
of AuNPs [6].

Arabidopsis thaliana (Arabidopsis) was the first plant whose genome was sequenced
and is a popular model plant species [9–11]. Therefore, Arabidopsis has been used to deci-
pher various morphophysiological and molecular responses that are induced during the in
planta synthesis of AuNPs [12–16]. Arabidopsis root system architecture (RSA) represents
the spatial configuration of primary and lateral roots and plays a pivotal role in the acquisi-
tion of nutrients and water [17]. Arabidopsis RSA is extensively modulated when exposed
to either an excess or deficiency of the essential nutrients or non-essential toxic heavy
metals [18–23]. Supplementation of the nutrient medium with sucrose (Suc) is also required
for proper root growth [19]. Therefore, Arabidopsis RSA is the epitome of elucidating the
effect of various stresses on the growth and development of seedlings. Interestingly, dur-
ing the in planta synthesis of AuNPs in Arabidopsis, low (10 ppm) and higher concentrations
(25–100 ppm) of KAuCl4 triggered biphasic stimulatory and inhibitory effects on
RSA [12,14,24].

Auxin plays a key role in the cell proliferation, differentiation, and expansion of
roots [25] and exhibits crosstalk with Suc and other nutrients (Jain et al., 2007 [20]; Rai et al.,
2015) [22]. However, the role of Suc and different macro (phosphorus [P] and nitrogen [N])-
and micro (iron [Fe] and zinc [Zn])-nutrients and their crosstalk with auxin homeostasis
during KAuCl4-mediated effects on root growth have not been elucidated. Therefore,
we first demonstrated the KAuCl4-mediated in vitro synthesis of Suc-dependent AuNPs
in a hydroponic system by UV–Vis spectroscopy and transmission electron microscopy
(TEM). Quantitative morphometric analysis by the ImageJ program revealed that KAuCl4
promoted Suc and nutrient-dependent root growth. Furthermore, we showed that auxin
IAA caused a perturbation in the morphological and molecular responses of the root
system, which KAuCl4 could recuperate. The study thus highlighted the pivotal roles of
Suc, nutrients, and auxin homeostasis in KAuCl4-mediated increased root growth.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Wild-type Arabidopsis (Arabidopsis thaliana) ecotype Columbia (Col-0) and the trans-
genics, CycB1;1::CDB-uidA [26], DR5rev::GFP [27], and pPIN1:GUS, pPIN2:GUS, pPIN3:GUS,
pPIN4:GUS, and pPIN7:GUS [28], were used in this study. Arabidopsis transgenic seeds
carrying DR5:GFP, pPIN1:GUS, pPIN2:GUS, pPIN3:GUS, pPIN4:GUS, and pPIN7:GUS were
obtained from the Arabidopsis Biological Resource Center [http://abrc.osu.edu, accessed
on 31 July 2020]. The element contamination-free autoclavable and reusable hydroponic sys-
tem was made from a polycarbonate plant culture box with a polypropylene lid (MagentaTM

vessel GA-7; W × L × H = 77 mm × 77 mm × 97 mm), polycarbonate sheet (0.030 inches
thick) cut into rectangular pieces (4 cm × 8 cm), and notched at the midpoint to fit together
into an X-shaped support for a piece (6 cm × 6 cm) of polypropylene mesh (250 µm pore
size), as previously described [29]. The pore size of the mesh facilitated the easy penetration
of the root system of seedlings through it into the nutrient medium. In a laminar flow
hood, surface-sterilized seeds were sown on the autoclaved mesh and placed in a sterile
Petri dish at a low (12 seeds around the perimeter of the mesh) and high (100 seeds/mesh)
density. The seeds were sown at a low density to minimize the entangling of roots during
growth and their subsequent harvesting for the documentation of different RSA traits
and reporter gene assays, while they were sown at a high density to collect the bulk root

http://abrc.osu.edu
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tissue for qRT-PCR analysis. The seeds sown on the mesh (low and high density) and
then initially transferred to the hydroponic system containing a modified one-half-strength
Murashige and Skoog (MS) medium (pH 7) [30] supplemented with 1.5% (w/v) sucrose
(Suc) (hereinafter referred to as nutrient-rich (NR) medium) for 7 d. Enough NR medium
was added to the hydroponic system to ensure that its level remained ~2 mm above the
X-shaped polycarbonate support and touched the surface of the mesh with sown seeds. The
hydroponic system was maintained under controlled growth conditions (16 h day/8 h night
cycle at 22 ± 2 ◦C and photosynthetically active radiation (PAR) of 80–90 µmol m−2 s−1

provided by white fluorescent tubes provided). In 7 d, seeds germinated, and their roots
penetrated through the mesh into the NR medium. Seedlings growing on the mesh were
gently removed from the hydroponic system and washed thrice each with sterile distilled
water and then with different nutrient media, in which they were hydroponically grown
for a further 7 d. The following nutrient media were used for growing 7 d-old wild-type
and/or transgenic seedlings, and their abbreviated names, which they are referred to
hereinafter, are indicated in the parenthesis: (i) NR supplemented with different concentra-
tions (0–100 ppm) of KAuCl4, (ii) NR supplemented with 10 ppm KAuCl4 (NR.KAuCl4),
(iii) NR deprived of Suc (Suc-), (iv) Suc- supplemented with 10 ppm KAuCl4 (Suc-.KAuCl4),
(v) KH2PO4 in MS medium [30] replaced with K2SO4 (P-), (vi) P-supplemented with
10 ppm KAuCl4 (P-.KAuCl4), (vii) NH4NO3 and KNO3 in MS medium [30] replaced with
KCl (N-), (viii) N-supplemented with 10 ppm KAuCl4 (N-.KAuCl4), (ix) FeSO4/Na2EDTA
removed from MS medium (Fe-), (x) Fe-supplemented with 10 ppm KAuCl4 (Fe-.KAuCl4),
(xi) ZnSO4·7H2O removed from MS medium (Zn-), (xii) Zn-supplemented with 10 ppm
KAuCl4 (Zn-.KAuCl4), (xiii) NR supplemented with 0.1 µM indole-3-acetic acid (IAA)
(NR.IAA), (xiv) NR.IAA supplemented with 10 ppm KAuCl4 (NR.IAA.KAuCl4), (xv) NR
supplemented with 0.1 µM 1-naphthaleneacetic acid (NAA) (NR.NAA), (xvi) NR.NAA
supplemented with 10 ppm KAuCl4 (NR.NAA.KAuCl4), (xvii) NR supplemented with
0.1 µM 2,4-dichlorophenoxyacetic acid (2,4-D) (NR.2,4-D), and (xviii) NR.2,4-D supple-
mented with 10 ppm KAuCl4 (NR.2,4-D.KAuCl4).

2.2. Quantification of the Morphological Traits

Seedlings (low density) grown on the mesh were gently removed from the hydroponic
system and transferred to a Petri dish containing water. Under a stereomicroscope, the
shoots and roots were dissected by a sharp scalpel at the shoot–hypocotyl junction. Fur-
thermore, leaves were dissected from the shoot, transferred to an agar (1%, w/v) Petri dish,
and scanned at 600 dpi (HP scanner). Scanned images were then used for documenting the
total shoot area by a Java-based ImageJ processing program [http://rsb.info.nih.gov/ij/,
accessed on 15 June 2021], as previously described [31]. Individual dissected roots were
immediately transferred to a 1.5 mL Eppendorf tube containing ~1 mL of 70% (v/v) ethanol
and stored in a refrigerator at 3–5 ◦C. This procedure facilitated storing the roots indefi-
nitely till further documentation of the RSA, which is often a laborious and time-consuming
process. To reveal the details of RSA, the individual root was gently removed from the
Eppendorf tube and transferred to an agar (1%, w/v) Petri dish. Under a stereomicroscope,
primary and first- and higher-order lateral roots were spread gently with a fine camel-hair
brush to ensure that they did not overlap. Spread-out roots were scanned, and the scanned
images were then used for measuring the length of the primary root and the number and
length of the first- and higher-order lateral roots using the ImageJ program [31].

2.3. Transmission Electron Microscopy (TEM)

The formation of AuNPs in the solution was analyzed by TEM. To make the grid
hydrophilic, a 400-mesh Formvar® carbon-coated copper grid was glow-discharged for
30 s in a Denton DV 502 vacuum evaporator (Moorestown, NJ, USA). The solution was
vortexed, sonicated and an aliquot (2 µL) was carefully pipetted onto the grid. The excess
aliquot was wicked off with tissue paper after 30 s. TEM micrographs were captured at
120 kV using FEI Tecnai Spirit TEM (Hillsboro, OR, USA).

http://rsb.info.nih.gov/ij/
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2.4. UV–Vis Spectroscopy

The absorption spectrum of AuNPs in the medium was recorded using a UV–Vis
spectrophotometer.

2.5. Reporter Gene Assay

The roots from the transgenic seedlings (low density) were excised as described for
quantifying the morphological traits. For histochemical analysis of the GUS activity in
CycB1;1:CDB-GUS, pPIN1:GUS, pPIN2:GUS, pPIN3:GUS, pPIN4:GUS, and pPIN7:GUS, the
excised roots of the transgenic seedlings were incubated overnight at 37 ◦C in a GUS
reaction buffer (1 mg mL−1 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid, 5 mM each
of K3Fe[CN]6 and K4Fe[CN]3H2O in 100 mM sodium phosphate buffer [pH 0]) as de-
scribed [17]. Stained roots (~10–12) for each of the treatments were cleared with 70% (v/v)
ethanol, and GUS activity in the primary root tip was captured by using a differential
interference contrast (DIC) microscopy (Axio Imager 2, Carl Zeiss, Jena, Germany). The
green fluorescent protein (GFP) images of the primary root tip of transgenics DR5:GFP were
captured using Axio Imager 2 (Carl Zeiss) and merged with DIC images by employing
ZEN lite 2012 analysis software [www.zeiss.com/microscopy/int/products/microscope-
software/zen-lite.html, accessed on 11 August 2021].

2.6. qRT-PCR Analysis

Wild-type seeds were hydroponically grown at a high density (100 seeds/mesh), and
the roots were excised, frozen in liquid nitrogen, and stored at −80 ◦C till further use.
Total RNA was isolated from the root tissue using RNeasy Plant Mini Kit (Qiagen) and
treated with RQ1 RNase-free DNase (Promega). DNase-treated RNA (~1 µg) was then
reverse-transcribed using the RevertAid First Strand cDNA Synthesis kit (Thermo Scientific,
Waltham, MA, USA). Real-time PCR was performed in triplicate for each sample using
SYBR green, gene-specific primers, and UBQ5 (At3g62250) as an internal control on the
7500 Real-Time PCR System (Applied Biosystems). The relative expression levels of the
genes were computed by the 2−∆∆CT method of relative quantification [32]. Primers used
for qRT-PCR are provided (Table S1).

2.7. Statistical Analysis

Statistical significance of the difference between mean values was determined using
Student’s t-test. Different letters on the histograms indicate that means were statistically
different at p < 0.05.

3. Results and Discussion
3.1. Medium Composition Affects the Properties of KAuCl4-Mediated In Vitro Synthesis of AuNPs
in a Hydroponic System

Several studies have used a hydroponic system containing a nutrient medium supple-
mented with KAuCl4 for the synthesis of AuNPs in diverse plant species [6,8,12–15,24].Therefore,
the effects of different media (deionized H2O, one-half-strength Murashige and Skoog (MS)
medium [33], nutrient-rich (NR) medium (MS medium + 1.5% Suc (w/v)) supplemented
with different concentrations (0–100 ppm) of KAuCl4, and Arabidopsis seedlings hydro-
ponically grown in NR medium for 14 d were investigated for color changes, the UV–Vis
spectrum, and the in vitro formation of AuNPs as revealed by TEM images (Figure 1A–C,
first–fourth row). Small monodisperse AuNPs (~30 nm) reflect red light, and as the particle
size increases, blue light is reflected. Therefore, changes in the color of the solution are
a good indicator of the dosage-dependent KAuCl4-mediated synthesis of AuNPs. The
concentrated stock solution (10,000 ppm) of KAuCl4 (100 mg) prepared in deionized H2O
(10 mL) has a distinct golden yellow color. No perceptible development of color was
observed upon supplementation of deionized H2O with different concentrations of KAuCl4
(1–100 ppm) (Figure 1A, first row). However, there were perceptible changes in the color of
the MS medium from pale blue to bluish–purple upon supplementation with KAuCl4 (1 to

www.zeiss.com/microscopy/int/products/microscope-software/zen-lite.html
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100 ppm) (Figure 1A, second row). A similar pattern of color changes was observed when
the NR medium was supplemented with different concentrations of KAuCl4 (Figure 1A,
third row). The results suggest that MS and NR media triggered the formation of AuNPs
with different geometries in a KAuCl4 concentration-dependent manner. Arabidopsis
seedlings were hydroponically grown in NR medium supplemented with different concen-
trations of KAuCl4, also inducing variable changes in the color of the medium (Figure 1A,
fourth row).
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Figure 1. The solution color, UV–Vis spectrum, and TEM images of KAuCl4-mediated synthesis
of AuNPs in different media. The effects of (a) deionized H2O, (b) one-half-strength MS medium,
(c) NR comprising one-half-strength MS medium supplemented with 1.5% (w/v) Suc, and (d) wild-
type Arabidopsis seedlings grown in NR medium supplemented with 1.5% (w/v) Suc and different
concentrations (0–100 ppm) of KAuCl4 for 14 d on (A) color and (B) UV–Vis spectrum. A shift
from colorless to different shades of bluish to bluish–purple and an increase in the absorbance at
530 nm, corresponding to the plasmon absorbance of AuNPs, suggested its formation in the medium
in KAuCl4 concentration-dependent manner. (C) TEM images of AuNPs in different media (a–d)
supplemented with KAuCl4 (100 ppm).

The optical properties of AuNPs are sensitive to their sizes, shapes, concentrations,
agglomeration states, and refractive indices near their surfaces [34]. Therefore, the surface
plasmon resonance of AuNPs could be easily detected in a UV–Vis spectrum as a peak at
~530 nm [35]. Therefore, UV–Vis spectroscopy was used to determine the status of AuNPs
in different media supplemented with KAuCl4 (0–100 ppm) (Figure 1B). As anticipated,
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no visible peaks could be detected in deionized H2O at any of the KAuCl4 concentrations
tested (Figure 1B, first row). The result was consistent with no apparent change in the color
of deionized H2O upon adding different concentrations of KAuCl4 (Figure 1A, first row).
Interestingly, there were no detectable peaks in the MS medium supplemented with 1 and
10 ppm KAuCl4 (Figure 1B, second row), despite changes in the color of these solutions
(Figure 1A, second row). The non-detection of peaks could be due to the low amounts
of AuNPs formed at these concentrations of KAuCl4. A peak was detected at 530 nm
when MS medium was supplemented with 25 ppm KAuCl4, and the absorbance value
commensurately increased with an increase in the concentration of KAuCl4 to 100 ppm
(Figure 1B, second row). The addition of 1.5% Suc (w/v) to the MS medium supplemented
with 10 ppm KAuCl4 resulted in the detection of a small peak at 530 nm (Figure 1B,
third row). Whereas the UV–Vis spectra of MS medium with (Figure 1B, third row) and
without Suc (Figure 1B, second row) and supplemented with 25–100 ppm KAuCl4 were
comparable, albeit with some minor variations in their absorbance values. However, there
were significant increases in the absorbance values when wild-type Arabidopsis seedlings
were grown in NR medium supplemented with different concentrations (0–100 ppm) of
KAuCl4 for 14 d (Figure 1B, fourth row) compared with KAuCl4 (0–100 ppm)-supplemented
NR medium (Figure 1B, third row). UV–Vis spectrum analysis further corroborated the
likely effects of exudates from the roots of Arabidopsis on the synthesis of AuNPs in
the medium.

Transmission electron microscopy (TEM) is a commonly used technique for the accu-
rate documentation of the geometry and size distribution of AuNPs [36]. Therefore, TEM
images were captured to determine the formation of AuNPs in different media supple-
mented with KAuCl4 (100 ppm) (Figure 1C). AuNPs could not be detected in deionized
H2O (Figure 1C, first row). The results are consistent with no changes in the color of the
solutions and the non-detection of peaks at 530 nm in deionized H2O supplemented with
KAuCl4 (100 ppm) (Figure 1A,B; first row). The distinct formation of AuNPs could be
detected in both MS (Figure 1C, second row) and NR (Figure 1C, third row) media, and
their sizes were 50 ± 2.6 nm and 10 ± 4.2 nm, respectively. The results suggest that the
addition of Suc to MS medium triggered the formation of AuNPs smaller in size. The study
revealed the presence of AuNPs in KAuCl4 (100 ppm)-supplemented MS and NR media
without any plants growing in them. However, when Arabidopsis seedlings were grown
for 14 d in KAuCl4 (100 ppm)-supplemented NR medium, the sizes of the majority of
AuNPs were 12 ± 3.8 nm, of which ~20% were >5 nm (Figure 1C, fourth row). Plant roots
continuously secrete an array of chemically diverse compounds into the medium in which
they are grown, including sugar alcohols, amino acids, and phenolics [37]. The exudates
from the roots of hybrid poplar (Populus deltoides × nigra, DN34) comprising amino acids,
enzymes, mucilage, phenolics, and sugars were presumed to be responsible for a reduction
of >90% Au(III) ions into AuNPs (ranging in size from 20 to 40 nm) during growth in a
hydroponic solution within 2 d [38]. Therefore, it could be speculated that exudates from
the roots of the Arabidopsis seedlings potentially contributed to the formation of AuNPs
in the KAuCl4 (100 ppm)-supplemented NR medium. AuNPs formed in hydroponics can
bind to the carrier proteins and/or organic chemicals and are taken up by the roots through
aquaporins or ion channels, transported apoplastically (through intercellular spaces) or
symplastically (through plasmodesmata) between cells, and translocated to the shoot along
with nutrients and water [38,39].

The temporal effects of Suc in the NR medium on the solution color and UV–Vis
spectrum (12 h, 24 h, and 48 h) and the TEM images (48 h) during KAuCl4 (100 ppm)-
mediated synthesis of AuNPs were also investigated (Figure S1) (see the Supplementary
Materials). The changes in the color of the medium from pale blue to bluish–purple
(Figure S1A) and increase in absorbance at ~530 nm (Figure S1B) revealed the temporal
effect of Suc in NR medium on KAuCl4-mediated synthesis of AuNPs (Figure S1C). Suc is
a non-reducing sugar, and its progressive hydrolysis into reducing glucose, and fructose
(Figure S1D) possibly contributed to the in vitro synthesis of AuNPs.
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3.2. KAuCl4 Triggers a Dosage-Dependent Augmented Growth Response

Root system architecture (RSA) comprises the ontogenetically distinct embryonic
and post-embryonic development of primary and lateral roots, respectively [17]. RSA
exhibits extensive developmental plasticity in response to various environmental cues,
including crosstalk effects of various macro- and micro-nutrients, and phytohormone
auxin [18,19,21,22]. Therefore, we investigated the dosage-dependent effect of KAuCl4 on
the growth response of Arabidopsis by growing a wild-type in an element contamination-
free and sterile hydroponic system [29] containing a nutrient-rich (NR) medium for 7 d
and then transferred to an NR medium supplemented with 0, 1, 10, 25, 50, and 100 ppm
KAuCl4 and grown for a further 7 d. The dosage-dependent effects of KAuCl4 on the
growth responses of Arabidopsis seedlings were documented, which varied from no
perceptible effect (1 ppm KAuCl4), augmented (10 ppm KAuCl4), inhibited (25 ppm and
50 ppm KAuCl4) and no growth (100 ppm KAuCl4) compared with the control (0 ppm
KAuCl4) (Figure 2). This study revealed a significant effect of KAuCl4 on the growth and
development of Arabidopsis seedlings in a dosage-dependent manner. Since there was a
perceptible augmented growth of Arabidopsis seedlings in the NR medium supplemented
with 10 ppm KAuCl4 (NR.KAuCl4) compared with NR medium (Figure 2), the shoot and
root were carefully removed from the hydroponic system, dissected, and separated at
the shoot–hypocotyl junction to document their phenotype and quantification of different
traits by the ImageJ program (Figure 3A–G). There was an increase in the number and size
of the leaflets of NR.KAuCl4 compared with NR (Figure 3A), which led to a significant
(p < 0.05) increase in the total shoot area (Figure 3C). NR.KAuCl4 also exhibited robust
root growth compared with NR (Figure 3B) due to significant (p < 0.05) increases in the
primary root length (Figure 3D), number and total length of first- and higher-order lateral
roots (Figure 3E,F), which together contributed to a ~3-fold increase in the total root length
(Figure 3G). The stimulatory effects of NR.KAuCl4 on the growth and development of
Arabidopsis seedlings were consistent with earlier studies [12,14]. It was evident from
the study that KAuCl4 exerted a biphasic dose–response (10 ppm KAuCl4: low-dosage-
mediated stimulation; 25–100 ppm KAuCl4: high-dosage-mediated inhibitory or toxic
effect) on the growth and development of the Arabidopsis seedlings. This type of biphasic
response to toxic heavy metals is called hormesis, which could be caused by an increase
in the production of antioxidants and/or the generation of reactive oxygen species in
plants [12,40,41]. Metal nanoparticles at extremely low concentrations (~pg/mL) have also
been shown to induce hormetic activation in high-potency homeopathic medicines [42].

3.3. KAuCl4-Mediated Augmented Growth Response Is Dependent on Suc and Nutrients

Suc and macro- and micro-nutrients play pivotal roles during growth and develop-
ment of Arabidopsis [18,19,21,22]. Therefore, we investigated the effects of deficiencies of
Suc and macronutrients (phosphate [Pi] and nitrogen [N]) and micronutrients (iron [Fe]
and zinc [Zn]) on low-dosage KAuCl4-mediated augmented growth responses of the shoots
and various root traits. Wild-type seedlings were hydroponically grown in an NR medium
deprived of Suc (Suc-), Pi (P-), N (N-), Fe (Fe-), and Zn (Zn-), and these media were sup-
plemented with 10 ppm KAuCl4 (Suc-.KAuCl4, P-.KAuCl4, N-.KAuCl4, Fe-.KAuCl4, and
Zn-.KAuCl4) for 7 d. The shoot and roots were removed from the hydroponic system, dis-
sected, and separated at the root–hypocotyl junction for documentation of their phenotype
and quantification of traits by the ImageJ program (Figure 4A–F). The growth of the shoots
and primary roots was highly attenuated under a Suc- condition (Figure 4A–C), and there
was no development of first- and higher-order lateral roots (Figure 4D,E), which resulted
in a significant (p < 0.05) reduction in the total root length (Figure 4F) compared with NR,
which contained 1.5% (w/v) Suc (Figure 3A–G). The results are consistent with an earlier
study reporting the key role of Suc in the growth and development of Arabidopsis during
growth under controlled growth conditions where white fluorescent tubes provide PAR of
80–90 µmol m−2 s−1, which is not sufficient for making the plants photosynthetically active,
and hence supplementation of the medium is mandatory [19]. A Suc-deprived medium
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supplemented with KAuCl4 (Suc-.KAuCl4) could not alleviate the inhibitory effects of
Suc- on the developmental responses of the shoot and root, and there were no significant
(p < 0.05) differences in their values between Suc- and Suc-.KAuCl4 (Figure 4A–F). The
study revealed that Suc-dependent low-dosage KAuCl4-mediated augmented the growth
and development of the shoots and roots.
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Figure 2. A low dosage of KAuCl4 triggers augmented the growth of Arabidopsis seedlings. Wild-
type Arabidopsis seedlings were hydroponically grown in a nutrient-rich (NR) medium for 7 d and
then transferred to an NR medium supplemented with 0, 1, 10, 25, 50, and 100 ppm KAuCl4 and
grown for a further 7 d. Dosage-dependent effects of KAuCl4 on the development responses of the
root and shoot were documented.
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Figure 3. A low dosage of KAuCl4 triggered augmented developmental responses of the shoot and
root. Wild-type Arabidopsis seedlings were initially grown hydroponically in the NR medium for
7 d and then transferred to the NR medium (control) and NR medium supplemented with 10 ppm
KAuCl4 (NR.KAuCl4) and grown for a further 7 d. The seedlings were removed from the hydroponic
system, and then (A) shoots and (B) roots were separated under the stereomicroscope and spread
on an agar plate (1.0%; w/v) to document their phenotype and quantification of different traits.
(C–G) Data are presented for (C) total shoot area, (D) primary root length, (E) the number of first-
and higher-order lateral roots, (F) total length of first- and higher-order lateral roots, and (G) total
root length. Values (C–G) are means ± SE (n = 12) and different letters on the histograms indicate
significant differences (p < 0.05).
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Figure 4. The deficiency of Suc and different essential nutrient elements affected KAuCl4-mediated
augmented developmental responses of the shoots and roots. Wild-type Arabidopsis seedlings were
initially grown hydroponically in NR medium for 7 d and then transferred to an NR medium deprived
of Suc (Suc-), Pi (P-), N (N-), Fe (Fe-), and Zn (Zn-), and these media were supplemented with 10 ppm
KAuCl4 (Suc-.KAuCl4, P-.KAuCl4, N-.KAuCl4, Fe-.KAuCl4, and Zn-.KAuCl4) for further 7 d. (A) The

seedlings were removed from the hydroponic system, shoots and roots separated, and spread on an
agar plate (1.0%; w/v) to document their phenotypes. (B–F) Data are presented for (B) total shoot
area, (C) primary root length, (D) the number of first- and higher-order lateral roots, (E) total length
of first- and higher-order lateral roots, and (F) total root length. Values (B–F) are means ± SE (n = 12),
and different letters on the histograms indicate significant differences (p < 0.05).

Among macronutrients, phosphorus (P) is a component of several molecules (ATP,
nucleic acids, and phospholipids), playing a key role in signal transduction and various
metabolic pathways. Therefore, it is indispensable for the growth and development of
plants [43]. Phosphate (Pi) is a bioavailable form of P in soil, and its acquisition by the
roots and mobilization to different parts of the plant is mediated by membrane-localized Pi
transporters [44]. Pi deficiency (P-) triggered the accumulation of anthocyanin in shoots
and significant (p < 0.05) reductions in the total shoot area, primary root length, number and
length of first- and higher-order lateral roots, and total root length (Figure 4A–F) compared
with NR containing P+ (1.25 mM KH2PO4) (Figure 3A–G). These findings are coherent with
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earlier studies [19,22]. A P- medium supplemented with KAuCl4 (P-.KAuCl4) could not
recuperate the inhibitory effects of P- on the developmental responses of the shoot and root,
and their values were comparable between P- and P-.KAuCl4 (Figure 4A–F). Suc plays a
key role in various spatiotemporal morphophysiological and molecular adaptive responses
of Arabidopsis during growth under different Pi regimes [19]. Thus, this study highlighted
the critical role of Pi in KAuCl4-mediated augmented growth responses.

We then investigated whether N availability also influenced the elevated growth
responses of Arabidopsis triggered by treatment with low-dosage KAuCl4. N is a vital
component of chlorophyll, nucleotides, and proteins and is critical for the growth and
development of plants [45]. N deficiency (N-) caused leaf chlorosis (insufficient production
of chlorophyll), which caused the shoots to become bluish–white (Figure 4A), and there
was a significant (p < 0.05) reduction in the total shoot area (Figure 4B) compared with
NR containing N+ (2.0 mM NH4NO3 and 1.9 mM KNO3) (Figure 3C). Contrary to P-, the
primary root length under N- condition was significantly (p < 0.05) longer (Figure 4C)
than NR (Figure 3D). The results reveal an antagonistic effect of P- and N- on primary
root growth. N- also caused a perceptible and significant (p < 0.05) increase in the number
of first- and higher-order lateral roots (Figure 4D) compared with NR (Figure 3E). The
results suggest the stimulatory effect of N- on the growth of primary and lateral roots,
which indicates a systemic foraging strategy that augments the soil volume explored by the
root system (Figure 4C,D). However, N- triggered significant (p < 0.05) reductions in the
length of first- and higher-order lateral roots and total root length (Figure 4E,F) compared
to NR (Figure 3F,G). The differential effects (inhibitory and stimulatory) of N- observed on
different shoot and root traits (Figure 4A–F) were consistent with earlier studies [20,46]. N-
medium supplemented with KAuCl4 (N-.KAuCl4) could not salvage the inhibitory effects
of N- on the developmental responses of the shoots, length of first- and higher-order lateral
roots, and total root length (Figure 4A,B,E,F). The number of first- and higher-order lateral
roots was also comparable between N- and N-.KAuCl4 (Figure 4D). Interestingly, primary
root length was significantly (p < 0.05) longer in N-.KAuCl4 compared with N-, which
suggested a stimulatory effect of KAuCl4 on primary root growth (Figure 4C).

Furthermore, the effects of micro-nutrient Fe and Zn availability on the low-dosage
KAuCl4-mediated elevated growth responses of the shoot and root traits of Arabidopsis
were investigated (Figure 4A–F). Fe is a key component of various metabolic processes,
including chlorophyll biosynthesis, photosynthesis, respiration. It is also a component
of Fe-binding sites and heme, involved in a multitude of redox reactions, and is a vital
mineral nutrient for almost all organisms [47]. Fe also plays a critical role in Pi-deficiency-
mediated adaptive morphophysiological and molecular responses [22,48]. Although Fe
deficiency (Fe-) did not exert any significant influence on shoot color, which remained
green (Figure 4A), there was a significant reduction (p < 0.05) in the total shoot area
(Figure 4B) compared with NR containing Fe+ (0.1 mM FeSO4·7H2O and 0.1 mM EDTA)
(Figure 3C). On the contrary, Fe- caused significant (p < 0.05) increases in the primary root
length, number, and length of first- and higher-order lateral roots, and total root length
(Figure 4C–F) compared with NR (Figure 3D–G). The results agree with an earlier study
reporting Fe-deficiency-mediated increased primary root length [49]. Compared with Fe-,
Fe-.KAuCl4 did not cause any significant (p < 0.05) increases in total shoot area, primary
root length, number, and length of first- and higher-order lateral roots, and total root length
(Figure 4A–F). The results further highlight the role of Fe in regulating the augmented
growth responses of the seedlings treated with KAuCl4.

After Fe, Zn is the second-most abundant essential transition metal in organisms
and acts as a cofactor of many enzymes involved in protein binding, signal transduction,
and transcriptional and translational regulation, but it could be toxic when present in
excess [50,51]. Zn also exhibits crosstalk with Fe, which is key to adaptive and defense
responses during stress mediated by heavy metals in Arabidopsis [51,52]. Zn- caused
chlorosis (yellowing of normally green shoots due to a lack of chlorophyll) (Figure 4A) and
significant reductions (p < 0.05) in the total shoot area and primary root length (Figure 4B,C)
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compared with NR-containing Zn+ (3 µM ZnSO4·7H2O) (Figure 3C,D). On the contrary,
Zn- triggered significant increases (p < 0.05) in the number and length of first- and higher-
order lateral roots and total root length (Figure 4D–F) compared with NR (Figure 3E–G).
The differential responses of primary and lateral roots to Zn- could be attributed to their
distinct ontogeny and were consistent with an earlier study [51]. Although total shoot
area and the number of first- and higher-order lateral roots were comparable between
Zn- and Zn-.KAuCl4 (Figure 4A,B,D), there were significant increases (p < 0.05) in the
primary root length, length of first- and higher-order lateral roots, and total root length in
the latter compared with the former (Figure 4C,E,F). Overall, these results reveal the impor-
tant and differential roles of Suc and nutrients (P, N, Fe, and Zn) in low-dosage KAuCl4
(10 ppm)-mediated augmented growth responses of shoots and roots.

3.4. Differential Efficacy of KAuCl4 in Recuperating Natural and Synthetic Auxin-Mediated
Modulation in RSA

The metabolism, signaling, and transport of phytohormone auxin orchestrates diverse
processes of plant growth and development, including apical dominance, root elongation,
and responses to phototropic, gravitropic, and various stresses [53]. In Arabidopsis, there is
extensive crosstalk between auxin, Suc, and Pi in regulating the developmental responses of
the ontogenetically distinct primary and first- and higher-order lateral roots [19]. Although
indole-3-acetic acid (IAA) was identified as the key active auxin in most plant species, many
other synthetic compounds, including herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and
1-naphthaleneacetic acid (NAA) revealed auxin-like activities in bioassays [53]. KAuCl4
(10 ppm) in NR medium triggered augmented growth in the shoot and root system of
Arabidopsis during growth in a hydroponic system (Figure 3).Therefore, to investigate the
effects of KAuCl4 on the developmental responses of the shoot and root system modulated
by the treatment with natural (IAA) and synthetic (NAA and 2,4-D) auxins, wild-type
Arabidopsis seedlings were hydroponically grown in the NR medium for 7 d. Seedlings
were then transferred to the NR medium supplemented with 0.1 µM each of IAA (NR.IAA),
NAA (NR.NAA), and 2,4-D (NR.2,4-D). Furthermore, the media were supplemented with
10 ppm KAuCl4 (NR.IAA.KAuCl4, NR.NAA.KAuCl4, and NR.2,4-D.KAuCl4) for 7 d. The
seedlings were harvested, shoots and roots separated, and spread on an agar plate (1.0%;
w/v) to document their phenotype and quantification of different traits (Figure 5A–F).
There were significant reductions (~43–47%) in the shoot area of the seedlings grown in
NR.IAA, NR.NAA and NR.2,4-D compared with NR (Figure 5A,B). The results are coher-
ent with earlier studies reporting the inhibitory effects of IAA, NAA, and 2,4-D on the
growth and development of Arabidopsis leaves [54–56]. When the seedlings were grown
in NR.IAA.KAuCl4 and NR.NAA.KAuCl4, shoot area increased significantly (~17–32%)
compared with NR.IAA, NR.NAA, respectively (Figure 5A,B). The study revealed the
efficacy of KAuCl4 in partially recuperating the inhibitory effect of IAA and NAA on shoot
growth. However, the shoot area of the seedlings grown in NR.2,4-D and NR.2,4-D.KAuCl4
was comparable, which suggested the inability of KAuCl4 in mitigating the 2,4-D-mediated
inhibitory effect on shoot growth and development. Furthermore, we investigated the
effects of NR.IAA, NR.NAA and NR.2,4-D on the developmental responses of different
root traits (primary root length, the number of first- and higher-order lateral roots, to-
tal length of first- and higher-order lateral roots, and total root length) (Figure 5A,C–F).
There were significant reductions (~57–60%) in the primary root length of the seedlings
grown in NR.IAA, NR.NAA and NR.2,4-D compared with NR (Figure 5A,C). NR.NAA
triggered a significant increase (~2.4-fold) in the number of first- and higher-order lateral
roots compared with NR, while NR.IAA and NR.2,4-D did not exert any significant in-
fluence on this root trait and were comparable with NR (Figure 5A,D). The total length
of first- and higher-order lateral roots in NR.IAA and NR.2,4-D significantly reduced by
~60.0% and ~79.0%, respectively, compared with NR, while NR.NAA did not exert any
significant influence on this root trait (Figure 5A,E). The total root length was significantly
reduced by ~10%, ~60.0%, and ~73.0%, in NR.NAA, NR.IAA, and NR.2,4-D, respectively,
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compared with NR (Figure 5 A, F). We further investigated the efficacy of NR.IAA.KAuCl4,
NR.NAA.KAuCl4, and NR.2,4-D.KAuCl4 in recuperating the inhibitory effects of NR.IAA,
NR.NAA and NR.2,4-D on different root traits. Interestingly, the primary root length of the
seedlings grown under NR.IAA.KAuCl4 was ~39% and ~3.48-fold higher compared with
NR and NR.IAA, respectively (Figure 5C). NR.NAA.KAuCl4 could recuperate only ~18%
primary root length compared with NR.NAA, while NR.2,4-D.KAuCl4 did not exhibit any
recuperation efficacy and was comparable with NR.2,4-D (Figure 5C). A significant recuper-
ation in the number of first- and higher-order lateral roots was induced by NR.IAA.KAuCl4
(~29.0%), NR.NAA.KAuCl4 (~24.0%), and NR.2,4-D.KAuCl4 (~41.0%) compared with
NR.IAA, NR.NAA and NR.2,4-D, respectively (Figure 5D). Interestingly, the total length of
first- and higher-order lateral roots and total root length of NR.IAA.KAuCl4 exhibited a
complete recuperation of NR.IAA-induced inhibitory effects on these traits as evidenced
by their values, which were comparable to NR (Figure 5E,F). Overall, this study provides
empirical evidence of the efficacy of KAuCl4 in mitigating the adverse effects of IAA on
different root traits compared with NAA and 2,4-D. Earlier studies also reported the dif-
ferential diffusion and carrier-mediated influx and efflux rates of IAA, NAA, and 2,4-D
and their variable effects on cell division and cell elongation in the cell lines of Nicotiana
tabacum [57,58]. Since the efficacy of KAuCl4 in recuperating the IAA-mediated inhibitory
effects on different root traits was relatively more explicit than by NAA and 2,4-D, for the
subsequent studies, the role of KAuCl4 (10 ppm) in mitigating IAA-mediated perturbation
of auxin signal transduction pathway was investigated.

3.5. KAuCl4 Recuperates the IAA-Mediated Inhibitory Effect on Primary Root Growth

The activities of a few stem cells residing at the tips of primary and lateral roots
control the overall root system architecture [59]. Auxin governs the root apical meristem
(RAM) size by regulating cell division [58]. Since KAuCl4 exhibited a significant recu-
peration of IAA-mediated inhibitory effects on different root traits (Figure 5A–F), its role
in mitigating IAA-mediated perturbation in the cell division of primary and lateral root
tips was investigated (Figure 6). Eukaryotic cell division is directed by the successive
action of cyclin/cyclin-dependent kinase (CYC/CDK) complexes [60]. Mitotic cyclins
are under stringent cell-cycle control and accumulate during mitosis, and thus are po-
tent markers for cells undergoing mitosis [61]. In Arabidopsis, mitotic cyclin CycB1;1
is expressed only around the G2/M transition of the cell cycle and is transcriptionally
regulated [62]. Arabidopsis CycB1;1, expressed in the G2/M phase of the cell cycle, was
translationally fused to Escherichia coli uidA to generate a labile CycB1;1::uidA reporter
for the precise spatio-temporal histochemical analysis of the mitotic activity [63]. Trans-
genic Arabidopsis expressing CycB1;1::uidA has been extensively used to demonstrate
the Pi-deficiency-mediated progressive loss of meristematic activity in the roots trigger-
ing a determinate developmental program that plays a pivotal role in modulating the
RSA [19,22]. The cell-cycle-specific ubiquitin-proteasome-mediated rapid degradation of
the green fluorescent protein (GFP) was achieved by fusing the cyclin B destruction box
(CDB) motif [64]. These studies revealed the enhanced sensitivity of the CDB-fused reporter
genes in accurately deciphering the spatio-temporal regulation of gene expression. Trans-
genic Arabidopsis harboring a translational fusion of chimeric CycB1;1::CDB-uidA exhibited
a tissue-specific post-mitotic expression of CycB1 [26]. Therefore, transgenic Arabidopsis
harboring CycB1;1::CDB-uidA was used to examine the efficacy of KAuCl4 in recuperating
IAA-mediated perturbation in the cell division of primary and lateral root tips (Figure 6).
Transgenic Arabidopsis seedlings (7-d-old) were hydroponically grown in NR, NR.KAuCl4,
NR.IAA, and NR.IAA.KAuCl4 media for 7 d, and roots were harvested for the histochemi-
cal assay of CycB1;1::CDB-uidA expression in primary and lateral root tips. Histochemical
analysis revealed robust expression of CycB1;1::CDB-uidA in the tips of the primary root
of the seedlings grown in NR, NR.KAuCl4. The results demonstrate the non-inhibitory
effect of KAuCl4 on meristematic activity in the primary root tip. On the contrary, there
was no expression of CycB1;1::CDB-uidA in the primary root tip of the seedlings grown in
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NR.IAA. The red arrow indicates the NR.IAA mediated perturbation of meristematic cell
proliferation in the primary root tip. Interestingly, the expression of CycB1;1::CDB-uidA
in the primary root tip of the seedlings grown in NR.IAA.KAuCl4 was comparable with
NR and NR.KAuCl4, highlighting the efficacy of KAuCl4 in recuperating the inhibitory
effect of IAA on meristematic activity in the primary root tip. The results are coherent with
the inhibitory and recuperation effects of IAA and KAuCl4, respectively, on the primary
root growth (Figure 5A,C). In a study on pea (Pisum sativum L.), cobalt (Co) and silver (Ag)
ions negated the inhibitory effect induced by ethylene precursor 1-aminocyclopropane-1-
carboxylic acid (ACC) but did not mitigate the IAA-mediated inhibition or swelling of the
roots [65]. The study suggested that the growth inhibition or swelling of the roots triggered
by IAA was not mediated by ethylene and provided evidence of the inhibitory effect of
IAA on root growth due to altered auxin homeostasis [65]. Therefore, it is presumed that
KAuCl4 exerts a significant influence on the auxin-mediated developmental response of
the primary root. Unlike the primary root, the expression of CycB1;1::CDB-uidA in the
lateral roots of NR.IAA was not affected and was comparatively more intense compared
with NR, NR.KAuCl4, and NR.IAA.KAuCl4. Primary and lateral roots are embryonic and
post-embryonic, respectively, in origin [17], and this could be a plausible explanation for
their differential responses to the treatments with IAA and KAuCl4. A temporal delay
in the loss of meristematic activity in the lateral root tip compared with the primary root
tip was also observed in Arabidopsis seedlings deprived of Pi and was attributed to the
difference in their ontogeny [22].

3.6. KAuCl4 Affects Root Growth by Modulating the Components of the Auxin Response Pathways

Auxin plays a pivotal role in the growth and development of the root system [66]. The
primary root length was significantly reduced during growth in NR.IAA compared with
NR, and, interestingly the inhibitory effect of IAA could be circumvented by growing the
seedlings in NR.IAA.KAuCl4 (Figure 5A,C). This led to an assumption of plausible crosstalk
between KAuCl4 and auxin sensing and signaling pathways. The distribution patterns and
levels of IAA are tightly regulated by synthesis, inactivation by conjugating with sugars
or amino acids, and transport [67]. High-NH4

+ stress-mediated inhibition of root growth
promoted the conjugation of auxin rather than its inhibition [68]. Several genes from Group
II of the GRETCHEN HAGEN3 (GH3) family encode IAA-amido synthetases, which con-
jugate excess IAA to amino acids to maintain auxin homeostasis, and GH3.3 is one of the
GH3 enzymes, which could convert chlorinated IAAs to amino acid conjugates in vitro [69].
The electrophoresis mobility shift assay (EMSA) revealed that the WRINKLED1 (WRI1)
transcription factor binds to the promoter of GH3.3 and plays a pivotal role in maintaining
the homeostasis of the root auxin [70]. In addition, Auxin/IAA (Aux/IAA) proteins are the
auxin-sensitive transcriptional repressors of the auxin response genes and mediate various
developmental and physiological processes [71]. Among the Aux/IAA genes, IAA6 was
shown to play diverse roles, such as controlling the initiation of adventitious roots and
mediating drought tolerance by regulating glucosinolate levels [72]. Both GH3.3 and IAA6
are the early auxin response genes [73], and thus potent candidates for determining the
effects of KAuCl4 on their expression. Therefore, qRT-PCR was employed to determine
the relative expression levels of GH3.3 and IAA6 in the roots of the seedlings grown in
NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4 media for 7 d (Figure 7A). Although the
relative expression levels of GH3.3 and IAA6 were comparable under NR and NR.KAuCl4,
NR.IAA triggered significant increases, which were attenuated and became comparable
with NR and NR.KAuCl4 upon treatment with NR.IAA.KAuCl4. The results suggest that
the attenuation of IAA-mediated early auxin response genes by KAuCl4. The likely influ-
ence of KAuCl4 on the IAA-mediated local modulations in auxin subcellular concentrations
and localization in the root was assumed. The activity of the synthetic auxin-responsive
promoter DR5 comprising tandem direct repeats of 11 bp, including the auxin-responsive
TGTCTC element, has been used for the microscopic visualization of the spatial distribu-
tion pattern of auxin [74]. A fluorescent variant DR5rev::GFP was constructed as a reliable
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reporter to monitor auxin response, its dynamics, and cellular levels [27]. Therefore, to
investigate the effect of KAuCl4 on auxin distribution in the primary root tip, transgenic
DR5rev::GFP was hydroponically grown in NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4
media for 7 d. Fluorescent microscopic images of the primary root tip revealed the effects
of NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4 on the spatial expression pattern of
the DR5rev:GFP (Figure 7B). Seedlings treated with NR and NR.KAuCl4 showed a normal
expression of DR5rev::GFP in columella cells and quiescent center (QC). Although the
expression of DR5rev::GFP in NR.IAA root tip was induced in the surrounding areas of
columella cells and QC, it was reinstated in NR.IAA.KAuCl4 root tip. The study provided
evidence of the effect of KAuCl4 on the spatial distribution of auxin in the root tip.
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Figure 5. The differential recuperating effects of KAuCl4 on the natural and synthetic auxin-mediated
perturbation of the developmental responses of the root. Wild-type Arabidopsis seedlings were ini-
tially grown hydroponically in the NR medium for 7 d and then transferred to the NR medium
supplemented with 0.1 µM each of natural (IAA) and synthetic (NAA and 2,4-D) auxins (NR.IAA,
NR.NAA, and NR.2,4-D), and these media were supplemented with 10 ppm KAuCl4 (NR.IAA.KAuCl4,
NR.NAA.KAuCl4, and NR.2,4-D.KAuCl4) for 7 d. (A) The seedlings were harvested, shoots and
roots separated, and spread on an agar plate (1.0%; w/v) to document their phenotype. (B–F) Data
are presented for (B) total shoot area, (C) primary root length, (D) the number of first- and higher-
order lateral roots, (E) total length of first- and higher-order lateral roots, and (F) total root length.
Values (B–F) are means ± SE (n = 12) and different letters on the histograms indicate significant
differences (p < 0.05).
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Figure 6. KAuCl4 restored the inhibitory effect of IAA on the meristematic cell proliferation of the
primary and lateral roots. The transgenic Arabidopsis seedlings harboring the cell division marker
CycB1;1::CDB-uidA reporter gene were initially grown hydroponically in the NR medium for 7 d
and then transferred to the NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4 media for further 7 d,
as described in the legend of Figure 5. Roots were harvested for the histochemical GUS expression
analysis of CycB1;1::CDB-uidA in the primary and lateral roots. The red arrow indicates the effect of
NR.IAA on perturbation in the meristematic cell proliferation in the primary root.
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Figure 7. KAuCl4 reinstated the IAA-mediated elevated expression of auxin-responsive genes
and auxin subcellular localization in the root. Arabidopsis (wild-type and transgenic DR5rev:GFP)
seedlings were initially grown hydroponically in the NR medium for 7 d and then transferred to
NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4 media for a further 7 d, as described in the legend
to Figure 5. Root tissues of the wild-type and transgenic DR5rev:GFP seedlings were harvested for
qRT-PCR and fluorescence microscopy, respectively. (A) The relative expression levels of GH3.3
and IAA6 in the root were determined by qRT-PCR. ACT2 was used as an internal control. Values
are means ± SE (n = 6) and different letters on the histograms indicate significant differences
(p < 0.05). (B) Microscopic images of the primary roots showing the effect of NR, NR.KAuCl4, NR.IAA,
and NR.IAA.KAuCl4 on the spatial expression pattern of the transgenic DR5rev:GFP. Asterisks
(***) indicate the normal expression of DR5:GFP in the QC and columella cells. Red arrows indicate
the surrounding region of the QC and columella cells where DR5:GFP expression was induced upon
IAA treatment.
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We further investigated whether KAuCl4 exerts any influence on the auxin export
carriers that could provide a more in-depth understanding of its observed effects on the
auxin fluxes in the root tip (Figure 7B). In Arabidopsis, PIN-FORMED (PIN) are secondary
transporter proteins asymmetrically localized within cells; their polarity governs the di-
rectionality of intercellular auxin flow and exerts a regulatory influence on an array of
diverse developmental responses, including embryogenesis, organogenesis, root and shoot
architecture, stem cell maintenance, tissue differentiation, and tropic responses [75]. Among
the PIN family members, PIN1-PIN4, PIN6, and PIN7 are PIN auxin export carrier proteins
mainly localized at the plasma membrane and facilitate intercellular auxin fluxes [76]. In
Arabidopsis root tips, PINs exhibited tissue-specific differential expression in vascular
tissue (PIN1), epidermal and outer cortical cells (PIN2), vascular cells and particularly at
the basal end of the provascular cells), vascular cells, and largely in the QC and auxin
peak region (PIN4), and vascular and columella cells (PIN7) [28]. PIN genes mediate the
directional transport of auxin toward the root tip region and their expressions are modu-
lated by both the external and internal cues fluxes [76]. The functional redundancy of PIN
proteins and auxin-dependent cross-regulation of PINs expression facilitates auxin gradi-
ent stabilization, which potentially contributes to the vigor of the adaptive development
responses of plants [77]. Therefore, the recuperating effects of KAuCl4 on IAA-mediated
changes in the spatial expression pattern of PIN1-4 and PIN7 reporter lines in the primary
root were investigated. Arabidopsis transgenic seedlings were hydroponically grown in
NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4 media for 7 d, and root tips were excised
for histochemical analysis of their GUS activity (Figure 8). Although the expression pat-
terns of PIN1-4 and PIN7 were comparable in NR and NR.KAuCl4, in NR.IAA, there were
variable reductions in their expression patterns with a relatively more profound effect on
pPIN2:GUS, where it was largely confined to the columella cells of the root tip (indicated by
black arrows). However, the modulated and differential GUS activities of PIN1-4 and PIN7
in NR.IAA was reinstated in the meristem region of the primary root tip of NR.IAA.KAuCl4
(indicated by red arrows). The study thus revealed the recuperating influence of KAuCl4
on IAA-mediated differential perturbation of the spatial expression pattern of PIN1-4 and
PIN7 in the primary root tip.

Next, we addressed whether KAuCl4 exerts any recuperating influence on IAA-
mediated modulation in the relative expression of the genes involved in the maintenance of
auxin homeostasis. An array of functionally diverse genes is involved in the biosynthesis
of auxin (Anthranilate synthase alpha1 (ASA1), Anthranilate synthase beta1 (ASB1), Nitrilase1
(NITI), Tryptophan aminotransferases of Arabidopsis1 (TAA1), and YUCCA9 (YUC9)), its influx
(Auxin1 (AUX1) and Like-Aux2 (LAX2)) and intracellular transport (PIN-Likes (PILS2, PILS5,
and PILS7)), and its signaling (Auxin Response Factor (ARF6 and ARF8)), which coordinately
play pivotal roles in regulating tissue-specific auxin homeostasis [53,67,75]. Therefore,
Arabidopsis wild-type seedlings were hydroponically grown in NR, NR.KAuCl4, NR.IAA,
and NR.IAA.KAuCl4 media for 7 d, roots were harvested, and the relative expression levels
of the genes involved in auxin biosynthesis, its influx, intracellular transport, and signaling
were assayed by qRT-PCR (Figure 9). The relative expression of all the genes (indicated by
blue dots), except TAAI (indicated by red dot), significantly reduced in NR.IAA compared
with NR. Interestingly, the relative expression of TAAI was ~8-fold higher in NR.IAA
than NR. However, the relative expressions of many of these genes were reinstated in
NR.IAA.KAuCl4 and comparable with NR, either completely (TAAI, YUC9, AUX1, LAX2,
PILS2, and ARF8) or partially (ASAI, ASB1, PILS7, and ARF6). Notably, the relative expres-
sion levels of NIT1 and PILS5 in NR.IAA.KAuCl4 were significantly higher compared with
both NR and NR.IAA. This study revealed that KAuCl4 recuperated the effects of IAA par-
tially, completely, or with augmentative effects on the relative expression of the functionally
diverse genes, which play a pivotal role in the maintenance of auxin homeostasis, which
is required for the proper growth and development of plants, including different traits of
the root system. A schematic model is presented, highlighting the differential recuperation
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efficacy of KAuCl4 on the cascade of functionally distinct genes, which play significant
roles in intricate auxin biosynthetic pathway-mediated root development (Figure 10).
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Figure 8. Differential recuperating effects of KAuCl4 on IAA-mediated spatial expression patterning
of the PIN genes in the primary root. The pPINs:GUS transgenic seedlings were grown hydroponically
in the NR medium for 7 d and then transferred to NR, NR.KAuCl4, NR.IAA, and NR.IAA.KAuCl4
media for a further 7 d, as described in the legend of Figure 5. Histochemical GUS-stained primary
root tip showing the expression of pPIN1:GUS, pPIN2:GUS, pPIN3:GUS, pPIN4:GUS, and pPIN7:GUS.
Black arrows indicate the NR.IAA-mediated reduced expression of the PIN genes, and red arrows
show the effects of NR.IAA.KAuCl4 treatment upon the restoration of the spatial expression pattern
of these genes.
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Figure 9. Differential recuperating effects of KAuCl4 on IAA-mediated effects on the genes involved
in the auxin pathway in the root. Wild-type Arabidopsis seedlings were hydroponically grown in
the NR medium for 7 d and then transferred to NR, NR.IAA, and NR.IAA.KAuCl4 for a further 7 d,
as described in the legend of Figure 5. Roots were harvested, and the relative expression levels of
the genes involved in auxin biosynthesis, its influx, intracellular transporters, and signaling were
assayed by qRT-PCR. ACT2 was used as an internal control. Values are means ± SE (n = 6) and
different letters on the histograms indicate significant differences (p < 0.05). Blue and red dots on the
histogram indicate the suppression and induction of the genes, respectively, in response to NR.IAA
treatment and their subsequent recuperation upon treatment with NR.IAA.KAuCl4.
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Figure 10. A model depicting the differential effects of KAuCl4 on the genes involved in the biosyn-
thesis, transport, and signaling of auxin in the root. (A) A schematic diagram of the primary root
tip with 11 specific cell types indicated with color codes. ASA1, ASB1, NIT1, AUX1, PILS2, PILS7,
ARF6, and ARF8 are expressed in all the cell types. However, TAA1 (vascular initials, quiescent
center, cortex/endodermal initials, lateral root cap/epidermal initials, and columella stem cells),
YUC9 (vascular initials, quiescent center, cortex/endodermal initials, lateral root cap/epidermal
initials, columella stem cells, columella, and lateral root cap), LAX1 (stele cells), and PILS5 (stele
cells, endodermis, cortex, quiescent center, and epidermis) show expressions in only some of the
specific cell types. (B) Blue and red dots on the genes indicate their suppression and induction,
respectively, in response to NR.IAA treatment and their subsequent recuperation upon treatment
with NR.IAA.KAuCl4. Solid arrows indicate pathways in which the genes, enzymes, or intermediates
are known, and dashed arrows indicate pathways that are not well-defined.

4. Conclusions

In the present study, the model plant Arabidopsis was used to investigate the effects
of the low-dosage (10 ppm) KAuCl4-mediated synthesis of AuNPs on the morphological
and molecular responses during growth in a hydroponic system. KAuCl4 stimulated
the growth of the shoots and root, which was dependent on the availability of Suc and
different nutrients, in particular Pi. Since phytohormone auxin plays a vital role in the
growth and development of the root system, we then investigated whether there was any
perturbation in auxin sensing and signaling cascades during KAuCl4-mediated stimulation
of the root growth. IAA is a natural and active auxin and caused a significant reduction
in the growth of the primary root, which was recuperated upon treatment with KAuCl4.
The results provide morphological evidence for the effect of KAuCl4 on auxin-mediated
developmental responses of the root. Furthermore, the use of Arabidopsis transgenics
(CycB1;1::CDB-uidA, DR5rev::GFP, pPIN1:GUS, pPIN2:GUS, pPIN3:GUS, pPIN4:GUS, and
pPIN7:GUS) revealed the intricate molecular mechanisms involved in the KAuCl4-mediated
mitigation of the IAA-induced inhibitory effects on the root growth. Finally, a qRT-PCR
analysis highlighted the efficacy of KAuCl4 in salvaging the attenuating effects of IAA on
cascades of functionally diverse genes involved in the auxin biosynthesis, transport, and
signaling. Future studies, employing synchrotron micro-focus X-ray fluorescence (µ-XRF)
and micro-X-ray absorption near-edge structure (µ-XANES) [78] could shed more light
on the in situ tissue-specific rates of speciation and bioreduction of KAuCl4 (Au3+) into
AuNPs (Au0) in hydroponically grown Arabidopsis under different nutrient regimes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12122099/s1, Figure S1. Effects of Suc in NR medium on the
solution color, UV-vis spectrum, and TEM images during KAuCl4-mediated synthesis of AuNPs.
NR medium containing Suc was supplemented with KAuCl4 (100 ppm) and after 12 h, 24 h, and
48 h (A) Color and (B) UV-vis spectrum was documented. (C) TEM images of AuNPs formed in the
medium after 48 h. (D) Hydrolysis of non-reducing sucrose into reducing glucose and fructose by the
process known as ‘inversion of sugar’. Table S1. List of primers used for qRT-PCR.
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