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Abstract: Grain legumes are a rich source of dietary protein for millions of people globally and thus
a key driver for securing global food security. Legume plant-based ‘dietary protein’ biofortification
is an economic strategy for alleviating the menace of rising malnutrition-related problems and
hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an
insufficient daily intake of animal protein/dietary protein due to economic limitations, especially
in developing countries. Therefore, enhancing grain legume protein content will help eradicate
protein-related malnutrition problems in low-income and underprivileged countries. Here, we
review the exploitable genetic variability for grain protein content in various major grain legumes
for improving the protein content of high-yielding, low-protein genotypes. We highlight classical
genetics-based inheritance of protein content in various legumes and discuss advances in molecular
marker technology that have enabled us to underpin various quantitative trait loci controlling
seed protein content (SPC) in biparental-based mapping populations and genome-wide association
studies. We also review the progress of functional genomics in deciphering the underlying candidate
gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in
shedding light on the accumulation of various novel proteins and metabolites in high-protein legume
genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging
genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve
legume-based dietary protein security and thus reduce the global hunger risk.
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1. Introduction

Alarming trends of anthropogenic climate change and environmental deterioration jeop-
ardize global crop yields, resource distribution, and ecosystems, resulting in global food insecu-
rity and undernourishment in the growing human population [1]. An estimated 840 million
people globally will be undernourished by 2030 [2]. The COVID-19 pandemic will have
compounded this figure, increasing the food-related hunger crisis. Dietary protein is an
essential macronutrient for human growth and development, with infants requiring 1.52 g
per kg body weight per day and adults recommended 0.80 g per kg body weight per
day [3]. Apart from micronutrient deficiency, malnutrition from dietary protein deficiency
causes ‘marasmus’, ‘kwashiorkor’ anemia, impaired immunity, and ‘environmental en-
teric dysfunction,’ most prevalent in developing and low-income countries, especially
southern Asia and sub-Saharan Africa [4–6]. Most of the people residing in these regions
predominantly consume maize, sorghum, and cassava in their daily diets, which are rich in
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starch but insufficient in protein [6,7]. Thus, many people, especially infants, inhabiting
these regions do not consume the required daily protein, affecting their overall growth and
development [5,6]. Notably, Europe imports 70% of the plant-based protein consumed by
its human population [8], a trend that the increasing global human population will further
exacerbate.

Breeding crops, especially legumes, with high-quality traits such as SPC is a promising
approach for overcoming these challenges. Grain legumes are one of the richest sources of
plant-based dietary protein, providing essential amino acids and supplying the increasing
demand for protein-based human diets [9]. Grain legume seeds, popularly known as
‘poor man’s meat’, are the cheapest protein source [10–12]. In addition, legume-based
protein could be instrumental in minimizing greenhouse gas emissions, helping to pro-
tect the environment [13]. Screening genetic variability for protein content in various
legume germplasm and crop wild relatives is the first step to identifying high-protein
grain legumes for the development of high-yielding, high-protein legumes. A classical
genetics-based approach could identify the inheritance pattern of high-protein gene(s) in
various legumes. Advances in genomics have enabled the dissection of the genetic architec-
ture of QTLs/gene(s) in various legumes through biparental mapping and genome-wide
association studies. Moreover, the availability of complete reference genome assemblies
and pangenomes of various legumes could assist in underpinning high-protein genomic
regions at the individual or species level. Likewise, advances in functional genomics have
enabled the discovery of various candidate genes that improve legume protein content and
their precise function. Proteomics and metabolomics can improve our understanding of
various complex pathways, molecular networks, and metabolites underlying high-protein
grain legumes. Non-destructive phenomics approaches could be instrumental for screening
and identifying high-protein lines with high efficiency. Emerging technologies such as
genomic selection, rapid generation advancement, and genome editing could be harnessed
to improve SPC, eradicate malnutrition related to dietary protein deficiency, and meet the
United Nations Sustainable Developmental Goal 2.

2. Grain Legumes as an Important Source of Dietary Protein

Grain legumes vary in their protein content, due to fundamental limitations on the
components a seed must contain to be viable. Many grains legumes have 25–40% SPC, and
it may be difficult to raise that number much beyond 40%. (See Table 1).

Table 1. Seed protein contents and deficient amino acids in major grain legumes.

Crop Scientific Name Range of Grain Seed Protein Content References Deficient Amino Acids
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Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 28 
 

 

residing in these regions predominantly consume maize, sorghum, and cassava in their 
daily diets, which are rich in starch but insufficient in protein [6,7]. Thus, many people, 
especially infants, inhabiting these regions do not consume the required daily protein, 
affecting their overall growth and development [5,6]. Notably, Europe imports 70% of the 
plant-based protein consumed by its human population [8], a trend that the increasing 
global human population will further exacerbate. 

Breeding crops, especially legumes, with high-quality traits such as SPC is a promis-
ing approach for overcoming these challenges. Grain legumes are one of the richest 
sources of plant-based dietary protein, providing essential amino acids and supplying the 
increasing demand for protein-based human diets [9]. Grain legume seeds, popularly 
known as ‘poor man’s meat’, are the cheapest protein source [10–12]. In addition, legume-
based protein could be instrumental in minimizing greenhouse gas emissions, helping to 
protect the environment [13]. Screening genetic variability for protein content in various 
legume germplasm and crop wild relatives is the first step to identifying high-protein 
grain legumes for the development of high-yielding, high-protein legumes. A classical 
genetics-based approach could identify the inheritance pattern of high-protein gene(s) in 
various legumes. Advances in genomics have enabled the dissection of the genetic archi-
tecture of QTLs/gene(s) in various legumes through biparental mapping and genome-
wide association studies. Moreover, the availability of complete reference genome assem-
blies and pangenomes of various legumes could assist in underpinning high-protein ge-
nomic regions at the individual or species level. Likewise, advances in functional ge-
nomics have enabled the discovery of various candidate genes that improve legume pro-
tein content and their precise function. Proteomics and metabolomics can improve our 
understanding of various complex pathways, molecular networks, and metabolites un-
derlying high-protein grain legumes. Non-destructive phenomics approaches could be 
instrumental for screening and identifying high-protein lines with high efficiency. Emerg-
ing technologies such as genomic selection, rapid generation advancement, and genome 
editing could be harnessed to improve SPC, eradicate malnutrition related to dietary pro-
tein deficiency, and meet the United Nations Sustainable Developmental Goal 2. 

2. Grain Legumes as an Important Source of Dietary Protein 
Grain legumes vary in their protein content, due to fundamental limitations on the 

components a seed must contain to be viable. Many grains legumes have 25–40% SPC, 
and it may be difficult to raise that number much beyond 40%. (See Table 1). 

Table 1. Seed protein contents and deficient amino acids in major grain legumes. 

Crop  Scientific Name Range of Grain Seed Protein Content References Deficient Amino Acids 

Chickpea 

 

Cicer erietinum L. 

17–22% before dehulling 

[14,15] 
Methionine, cysteine 

threonine and valine [16] 25.3–28.9% after dehulling 

Lentil 

 

Lens culinaris Medik 20.6% and 31.4% [17] Methionine, cysteine [18] 

Lupin 

 

Lupinus albus L. 35–44% [19,20] Alanine, tryptophan [21] 

Cicer erietinum L.
17–22% before dehulling

[14,15] Methionine, cysteine
threonine and valine [16]

25.3–28.9% after dehulling

Lentil

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 28 
 

 

residing in these regions predominantly consume maize, sorghum, and cassava in their 
daily diets, which are rich in starch but insufficient in protein [6,7]. Thus, many people, 
especially infants, inhabiting these regions do not consume the required daily protein, 
affecting their overall growth and development [5,6]. Notably, Europe imports 70% of the 
plant-based protein consumed by its human population [8], a trend that the increasing 
global human population will further exacerbate. 

Breeding crops, especially legumes, with high-quality traits such as SPC is a promis-
ing approach for overcoming these challenges. Grain legumes are one of the richest 
sources of plant-based dietary protein, providing essential amino acids and supplying the 
increasing demand for protein-based human diets [9]. Grain legume seeds, popularly 
known as ‘poor man’s meat’, are the cheapest protein source [10–12]. In addition, legume-
based protein could be instrumental in minimizing greenhouse gas emissions, helping to 
protect the environment [13]. Screening genetic variability for protein content in various 
legume germplasm and crop wild relatives is the first step to identifying high-protein 
grain legumes for the development of high-yielding, high-protein legumes. A classical 
genetics-based approach could identify the inheritance pattern of high-protein gene(s) in 
various legumes. Advances in genomics have enabled the dissection of the genetic archi-
tecture of QTLs/gene(s) in various legumes through biparental mapping and genome-
wide association studies. Moreover, the availability of complete reference genome assem-
blies and pangenomes of various legumes could assist in underpinning high-protein ge-
nomic regions at the individual or species level. Likewise, advances in functional ge-
nomics have enabled the discovery of various candidate genes that improve legume pro-
tein content and their precise function. Proteomics and metabolomics can improve our 
understanding of various complex pathways, molecular networks, and metabolites un-
derlying high-protein grain legumes. Non-destructive phenomics approaches could be 
instrumental for screening and identifying high-protein lines with high efficiency. Emerg-
ing technologies such as genomic selection, rapid generation advancement, and genome 
editing could be harnessed to improve SPC, eradicate malnutrition related to dietary pro-
tein deficiency, and meet the United Nations Sustainable Developmental Goal 2. 

2. Grain Legumes as an Important Source of Dietary Protein 
Grain legumes vary in their protein content, due to fundamental limitations on the 

components a seed must contain to be viable. Many grains legumes have 25–40% SPC, 
and it may be difficult to raise that number much beyond 40%. (See Table 1). 

Table 1. Seed protein contents and deficient amino acids in major grain legumes. 

Crop  Scientific Name Range of Grain Seed Protein Content References Deficient Amino Acids 

Chickpea 

 

Cicer erietinum L. 

17–22% before dehulling 

[14,15] 
Methionine, cysteine 

threonine and valine [16] 25.3–28.9% after dehulling 

Lentil 

 

Lens culinaris Medik 20.6% and 31.4% [17] Methionine, cysteine [18] 

Lupin 

 

Lupinus albus L. 35–44% [19,20] Alanine, tryptophan [21] 

Lens culinaris Medik 20.6% and 31.4% [17] Methionine, cysteine [18]

Lupin

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 28 
 

 

residing in these regions predominantly consume maize, sorghum, and cassava in their 
daily diets, which are rich in starch but insufficient in protein [6,7]. Thus, many people, 
especially infants, inhabiting these regions do not consume the required daily protein, 
affecting their overall growth and development [5,6]. Notably, Europe imports 70% of the 
plant-based protein consumed by its human population [8], a trend that the increasing 
global human population will further exacerbate. 

Breeding crops, especially legumes, with high-quality traits such as SPC is a promis-
ing approach for overcoming these challenges. Grain legumes are one of the richest 
sources of plant-based dietary protein, providing essential amino acids and supplying the 
increasing demand for protein-based human diets [9]. Grain legume seeds, popularly 
known as ‘poor man’s meat’, are the cheapest protein source [10–12]. In addition, legume-
based protein could be instrumental in minimizing greenhouse gas emissions, helping to 
protect the environment [13]. Screening genetic variability for protein content in various 
legume germplasm and crop wild relatives is the first step to identifying high-protein 
grain legumes for the development of high-yielding, high-protein legumes. A classical 
genetics-based approach could identify the inheritance pattern of high-protein gene(s) in 
various legumes. Advances in genomics have enabled the dissection of the genetic archi-
tecture of QTLs/gene(s) in various legumes through biparental mapping and genome-
wide association studies. Moreover, the availability of complete reference genome assem-
blies and pangenomes of various legumes could assist in underpinning high-protein ge-
nomic regions at the individual or species level. Likewise, advances in functional ge-
nomics have enabled the discovery of various candidate genes that improve legume pro-
tein content and their precise function. Proteomics and metabolomics can improve our 
understanding of various complex pathways, molecular networks, and metabolites un-
derlying high-protein grain legumes. Non-destructive phenomics approaches could be 
instrumental for screening and identifying high-protein lines with high efficiency. Emerg-
ing technologies such as genomic selection, rapid generation advancement, and genome 
editing could be harnessed to improve SPC, eradicate malnutrition related to dietary pro-
tein deficiency, and meet the United Nations Sustainable Developmental Goal 2. 

2. Grain Legumes as an Important Source of Dietary Protein 
Grain legumes vary in their protein content, due to fundamental limitations on the 

components a seed must contain to be viable. Many grains legumes have 25–40% SPC, 
and it may be difficult to raise that number much beyond 40%. (See Table 1). 

Table 1. Seed protein contents and deficient amino acids in major grain legumes. 

Crop  Scientific Name Range of Grain Seed Protein Content References Deficient Amino Acids 

Chickpea 

 

Cicer erietinum L. 

17–22% before dehulling 

[14,15] 
Methionine, cysteine 

threonine and valine [16] 25.3–28.9% after dehulling 

Lentil 

 

Lens culinaris Medik 20.6% and 31.4% [17] Methionine, cysteine [18] 

Lupin 

 

Lupinus albus L. 35–44% [19,20] Alanine, tryptophan [21] Lupinus albus L. 35–44% [19,20] Alanine, tryptophan [21]



Int. J. Mol. Sci. 2022, 23, 7710 3 of 27

Table 1. Cont.

Crop Scientific Name Range of Grain Seed Protein Content References Deficient Amino Acids

Soybean
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globulin (11S legumin and 7S vicilin) and albumin—with low amounts of glutelins and
prolamine; however, the seed is deficient in cysteine and methionine amino acids [43,44].
Despite rich sources of various essential amino acids, cysteine, methionine, valine, and
threonine are the major limiting amino acids in chickpea [45]. Desi type chickpea has higher
SPC than the kabuli type but no differences in essential amino acids [45].

Common bean (Phaseolous vulgaris L.) SPC ranges from 20 to 30% [25,26], and plays a
pivotal role in mitigating protein-related malnutrition, especially in underdeveloped coun-
tries [46,47]. The major storage protein in common bean is phaseolin, accounting for 36–46%
of total seed proteins [48], with 50–60% of the phaseolin belonging to the 7S vicilin class,
insufficient in methionine, cysteine, and tryptophan essential amino acids [49–51].

Cowpea (Vigna unguiculata L. Walp.) is a ‘multi-functional’ grain legume widely used
for human consumption. It helps mitigate the challenges of malnutrition in sub-Saharan
Africa, and tropical and sub-tropical regions globally [52,53]. Cowpea SPC ranges from 15
to 25% [33,34] (see Table 1). Cowpea storage proteins are abundant in lysine and tryptophan
but deficient in methionine and cysteine [53]. Globulins are the most abundant storage
protein fraction of cowpea grain, followed by albumins, glutelins, and prolamin [54].

Faba bean (Vicia faba L.) SPC ranges from 26 to 41% [30,31,55,56], with abundant
essential amino acids except for tryptophan, cysteine, and methionine [57]. More than 80%
of the seed proteins comprise globulins (vicilin and legumin) [55]. Of the essential amino
acids, faba bean seed is highest in lysine [58].

Lentil (Lens culinaris Medik) SPC ranges from 20 to 30% [59]. Like other legumes, lentil
seed has a high globulin content (44–70% of storage protein, constituting 11S legumin and
7S vicilin and convicilin) and albumin (26–61% of lentil proteins) but low prolamin and
glutelin levels [60,61].

White lupin (Lupinus albus L.) seeds are a rich reservoir of protein containing up
to 44% [19,62], with two major classes of protein—albumin (15%) and globulin (85%) [63].
The globulin protein comprises α-, β-, γ-, and δ-conglutins [20]. Despite some allergenic
effects in white lupin seed protein, they are low in antinutritive properties compared
with other grain legumes such as pea and soybean [62,64]. Moreover, white lupin seed
contains higher amounts of some important amino acids (lysine, phenylalanine, arginine,
and leucine) than soybean, rendering it a high-demand grain legume from a nutritional
point of view [65].

Soybean (Glycine max (L.) Merr.) is rich in protein, ranging from 35 to 45%. It is
deficient in methionine [22,23] but has sufficient lysine to overcome the lysine deficiency
of cereals [66]. In 2018, it was estimated that soybean alone contributed 70% of the global
protein meal [67].

Mung bean (Vigna radiata L.) contains easily digestible protein and several essential
micronutrients [68]. It is an excellent source of protein except for sulfur-containing amino
acids (methionine and cysteine) [69]. Due to its ease of digestibility relative to other
legumes [70] and low hypoallergic properties, mung bean is used as a weaning food for
infants [71]. Moreover, mungbean is a good meat substitute for vegetarians and those who
cannot afford animal-based dietary protein [12].

Pea (Pisum sativum L.) is rich in protein, ranging from 13.7 to 30.7% [37]. Pea seed
protein comprises legumin, vicilin, convicilin, and globulin-related proteins [37]. Vicilin
is the most abundant protein (26.3–52.0% of total pea protein extract) [37]. Moreover,
pea protein is in high demand in food industries due to its gluten-free quality and low
allergenicity [72].

Pigeon pea (Cajanus cajan (L.) Millsp) seeds contain 20–22% protein and play an
essential role in providing plant-based dietary protein to the vegetarian population in India,
thus ensuring protein-based food security [73].

Urd bean (Vigna mungo L. Hepper) is another important grain legume rich in protein
(up to 25%), comprising globulin (63%), albumin (12%), and glutelin (21%) [74]. Urd bean
seeds are rich in glutamic acid, aspartic acid, and lysine but deficient in methionine and
cysteine [74].
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3. Harnessing Genetic Variability for Improving Seed Protein Content in
Grain Legumes

Harnessing crop germplasm diversity is an economical way to improve important
breeding traits, including SPC in grain legume crops [75–79]. Crop genetic resources
are the key reservoir for exploring high-SPC genotypes in grain legumes. Considerable
amounts of genetic variability for SPC have been captured in chickpea [78,80,81], such
as 12.4–31.5% [82], 17–22% [83], and 14.6–23.2% [84]. Serrano et al. [84] identified several
high SPC genotypes (LEGCA608, LEGCA609, LEGCA614, LEGCA619, LEGCA716) that
could be used to improve chickpea SPC in elite cultivars.

Cowpea is a cheap source of protein for improving human nutrition. Boukar et al. [77]
assessed a set of 1541 cowpea lines for genetic variability in grain protein content and
mineral profiles. They reported a wide range of genetic variability for SPC (17.5–32.5%),
including TVu-2508 (32.2%) [77]. Likewise, Weng et al. [85] screened 173 cowpea accessions
collected from various parts of the world at two locations (Fayetteville and Alma, Arkansas).
They also reported a substantial amount of genetic variability for SPC (22.8–28.9%), includ-
ing PI 662992 (28.9%), PI 601085 (28.5%), PI 255765 (28.4%), PI 255774 (28.4%), and PI 666253
(28.4%) [85], which could be used to transfer the high SPC trait into high-yielding elite
cowpea varieties. The nutritional profiles (including grain protein content) of 22 cowpea
genotypes collected from various regions of eastern, southern, and western Africa were
evaluated at two locations in South Africa [34]. Seed protein contents, measured using
the combustion method, ranged from 23.16 to 28.13% [34]. The authors noted significant
positive correlations between SPC and various mineral contents, indicating the possibility
of simultaneously selecting these traits. Among the tested genotypes, 98K-5301 had high
Ca and SPC [34]. Similarly, an evaluation of 21 cowpea genotypes identified high SPC
in COVU-702 (27.7%) and HC-98-64 (27.9%) [86]. In another study, GonÇalves et al. [87]
identified high SPC in Paulistinha (29.2%) among 18 tested cowpea genotypes. An eval-
uation of 30 Brazilian cowpea lines for protein, vitamin, and mineral content identified
high SPC in MNC01-649F-2 (28.3%), BRS-Cauamé (27.8%), BRS-Paraguacu (27.7%), BRS-
Marataoa (27.4%), Canapuzinho (25.0%), BRS-Tumucumaque (24.8%), and MNC01-631F-15
(24.6%) [88].

The SPC of selected common bean landraces ranged from 16.54 to 25.23%, while
selected modern common bean cultivars ranged from 19.70 to 24.30% (Celmeli et al. [79];
see Table 2).

Table 2. List of various legume genotypes with improved seed protein content.

Crop Genotypes Seed Protein Content Source References

Chickpea ICC 5912 29.2% ICRISAT, Patancheru, India [78]
LEGCA608, LEGCA609, LEGCA614,

LEGCA619, LEGCA716 >22% Cordoba [84]

Common
bean J-216, FJIP-43 222 (J/L-146) to 330 (J-216); 180

(G11027A) to 311 (FJIP-43) g kg−1 Mexican state of Jalisco and Durango [89]

LR05 25.23% Food Safety and Agricultural
Research Center, Akdeniz University [79]

6-EX 23% Santo Antônio de Goiás, Brazil [90]
Accession 4049 – Portugal [91]

Cowpea HC-6, HC-5, CP-21, LST-II-C-12, CP-16,
COVU-702, HC-98-64 26.7–27.9% India [86]

TVu-2723, TVu-3638, TVu-2508 32.50% Minjibir, Kano State, Nigeria [77]
MNC01-649F-2, BRS-Cauamé,

BRS-Paraguaçu, BRS-Marataoã 27.4–28.3% – [88]

“Early Scarlet” and 09-204 26.9–27.4% Arkansas State (Fayetteville, Alma,
Hope) [92]

Bengpla 40% Dokpong and Bamahu near Wa,
Ghana, South Africa, Taung [93]

PI662992, PI601085, PI255765, PI255774,
PI666253 28.4–28.9% Florida, Minnesota, Nigeria,

Arkansas [85]

Vuli, Mamlaka, IT90K-59, Ngoji,
TVU13953, 98K-5301

Tanzania, South Africa, Nigeria,
South Africa, Nigeria [34]
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Table 2. Cont.

Crop Genotypes Seed Protein Content Source References

Paulistinha 29.20% Brazil [87]

Faba bean 25 genotypes 28.43–29.68% Manitoba and Saskatchewan,
Canada [94]

Grasspea IC127616 32.20% India [95]
Lentil L. orientalis 18.3–27.75% India, IIPR, Kanpur [96]

L. ervoides 18.9–32.7% India, IIPR, Kanpur [96]
Mungbean MGG330, Nagpuri 29.9% and 29.3% India [97]

Pea PI206793, PI206801, PI206838, PI210619,
PI210644, PI210675, PI210678, PI210684 >30% Manitoba and Ontario, Canada [98]

Majoret 240.4 g kg−1 Grain Research Laboratory
Winnipeg, Canada [82]

NGB 101293 Jordan 26.80% [37]

L1 317.63 g kg−1 Institute of Field and Vegetable
Crops (Smederevska Palanka, Serbia) [72]

Soybean D76-8070 450 g kg−1 – [99]
BARC-6, BARC-7, BARC-8, BARC-9 – – [100]

AC Proteus – Central Experimental Farm (Ottawa,
ON) Canada [101]

TN03-350, TN04-5321 High protein content

Tennessee Agricultural Experiment
Station, Tennessee, USA, USDA–ARS
and the North Carolina Agricultural

Research Service

[102]

N6202′ – [103]
Lines developed from Kwangan- kong
× Samnamkong and Danbaegkong ×

Samnam-kong
34.3–44.4% and 35.8–49.6%

Yeongnam Agricultural Research
Institute (YARI), Milyang, Republic

of Korea
[104]

JIHJ117 53% – [105]
17D derived population and M23

derived lines 382 and 403 g kg−1 University of Missouri Fisher Delta
Research Center, Portageville, MO [106]

High-pro 1′ developed from Wyandot
× GASF98-114 401 g kg−1

USDA Agricultural Service and Ohio
Agricultural Research and

Developmental Centre Wooster
[107]

‘TN11-5102’ 421 g kg−1 protein on a dry weight
basis

University of Tennessee Agricultural
Research [108]

PI407228 392.6–481.7 g kg−1

Central Crops Research Station in
Clayton, NC, Bradford Farm in
Columbia, Sandhills Research
Station in Jackson Springs, NC

[109]

R11-7999 439 g kg−1 (dry weight)
Arkansas Agricultural Experiment

Station [110]

Bioagro – – [111]

S16-5540GT 41.10%
University of Missouri–Fisher Delta
Research Center Soybean Breeding

Program
[112]

Grasspea is an inherent climate-resilient grain legume with an excellent source of SPC.
An evaluation of 37 grasspea genotypes identified IC127616 rich in SPC (32.2%) [95].

An analysis of 27 local mung bean landraces using the micro-Kjeldahl method identi-
fied significant genetic variability for SPC (17.2–29.9%), with the highest values in MGG30
(29.9%), NAGPURI (29.3%), and BSN1 (27.8%) [97]. Moreover, significant genetic variability
for SPC (15.2–21%) rich in lysine, tryptophan, valine, leucine, isoleucine and phenylalanine
amino acids was noted in Vigna radiata var sublobata, a wild species of mung bean [113].

Genetic variability for SPC in lentil ranges from 20 to 30% [76,114–117]. Likewise,
lentil crop wild relatives (CWRs) have significant genetic variability for SPC, such as L.
orientalis (18.3–27.75%) and L. ervoides (18.9–32.7%) [96], which could be used in breeding
programs to improve SPC in elite lentil cultivars.

Pea has considerable genetic variability for SPC (19.3–25.2%) (Gottschalk et al. [75];
see Table 2). Wang and Daun [82] reported a SPC ranging from 201.6 to 266.6 g kg−1

DM in four elite pea cultivars. In large sets of pea accessions, the SPC was 22–32% [98]
and 23–32% [118] using the Kjeldahl technique and 20.6–27.3% [119], 18.6–27.3% [120],
17–27% [121], 17.5–27.8% [122], and 19.3–30.3% [123] using the near-infrared technique.
Several promising pea genotypes with high SPC have been identified: CDC Striker (up
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to 27.8%) [124–127], Ballet (up to 25.9%) [119,128], Solara (28.8%) [129], Caméor (29.9%),
VavD265 (27.5%), and China (32%) [128].

Breeding for high SPC in soybean is a primary objective in soybean breeding programs;
however, progress has been limited by the negative relationship between SPC and grain
yield and oil content [24,130]. For example, Bandillo et al. [131] and Warrington et al. [132]
reported a highly negative correlation between the soybean SPC allele and seed oil content,
reducing oil content by 1% for every 2% increase in SPC.

High-protein soybean lines include Danbaegkong (48.9%) [133] and Kwangankong
(44.7%) [134], and TN11-5102 selected from 5601T cultivar (421 g kg−1 protein on a dry
weight basis) [108]. Apart from cultivated species, soybean CWRs (e.g., Glycine soja) are an
important source of high-protein QTLs [135–137]. A population developed by incorporating
exotic soybean germplasm exhibited significant genetic variability for SPC [138]. Wehrmann
et al. [139] and Wilcox and Cavins [140] backcrossed the high-protein trait from Pando into
Cutler 71, a high-yielding low-protein genotype soybean. Later, Cober and Voldeng [101]
attempted to transfer the high-protein trait from AC Proteus to Maple Glen; however,
the selected progenies exhibited higher protein content than Maple Glen but no yield
advantage. Sathia, Seti, Kavre, and Soida Chiny soybean cultivars, collected in Nepal,
had high SPC (up to 42–45%) compared to William 82 (39%) and higher arginine (5–10%)
content than William 82 (7.4%) [141].

Hence, harnessing the available genetic variability for SPC requires the large-scale
screening of land races, CWRs, and grain legume germplasm locked in gene banks across
the globe.

4. Mendelian Inheritance of Seed Protein Content in Legumes

Several researchers have worked out the genetics of SPC based on Mendelian genetics
in various grain legumes [142–144]. Considering pea storage proteins (legumin and con-
vicilin), Matta and Gatehouse [145] mapped the legumin gene (Lg-1), behaving as a single
Mendelian gene with five alleles on LG7, and the convicilin gene (Cvc), behaving as a single
Mendelian gene on LG2 using seeds developed from 1238 × 1263, 110 × 807 and 110 × 851
F2 crosses. Subsequently, Mahmoud and Gatehouse [146] explained the monogenic inheri-
tance of another pea SPC vicilin (Vc-1) gene controlled by two codominant genes located
on LG7 using an F2 cross from 360 × 611.

Perez et al. [147] revealed the genetic basis of high and low SPC in pea using the genet-
ics of seed size (round vs. wrinkled). They found that round-seeded pea plants (RR/RbRb)
had low SPC with low albumin content, while those with recessive alleles (rr/rbrb) had high
SPC and high albumin content [147]. High heritability of protein content and its control
by a few gene(s) is an opportunity to improve protein content in cowpea [92]. Moreover,
diallel crosses of six populations derived from two high-protein lines and two high-yielding
soybean lines revealed a significant negative correlation between protein content and yield
in the high protein × high protein population but a significant positive correlation between
protein content and yield in the high yielding × high yielding population [148]. In pigeon
pea, an analysis of F1 and F2 progenies derived from crosses involving four parents revealed
a minimum of 3–4 genes controlling protein content [149]. The authors concluded that the
low protein trait is partially dominant over the high protein trait.

Various studies have reported a significant effect of environment on SPC [150–152].
In soybean, this significant effect involved multiple genes and the quantitative nature of
the SPC trait [150,151]. In chickpea, an F2 segregating population developed from ICC5912
(blue flowered) × ICC17109 (white flowered) revealed the quantitative nature of the SPC
trait and its high negative correlation with seed yield and seed size [78]. A 5 × 5 half diallel
cross of cowpea lines revealed the presence of additive and non-additive gene effects for
SPC. High seed albumin, prolamin, and globulin were associated with positive effects of
the dominant gene, while high SPC and glutelin content were associated with recessive
genes [153]. In lentil, Kumar et al. [154] also reported the quantitative nature of the SPC trait.
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High genetic variation in lentil seed storage protein resulted from high G × E interactions
exhibiting moderate heritability (31.3%) [152].

5. QTL Mapping for Seed Protein Content

Advances in grain legume genomics have facilitated the identification of under-
lying QTLs controlling SPC using biparental mapping populations in various grain
legumes [118,119,155–157].

Few studies have uncovered QTLs controlling SPC in chickpea. However, one study
that phenotyped recombinant inbred lines (RILs) derived from ICC995 × ICC5912 across
four environments and used a genotyping by sequencing approach delineated one major
effect QTL q-3.2 for SPC that explained 44.3% of the phenotypic variation (PV) on LG3 [158].

In pea, using an F2-derived Wt10245 ×Wt11238 mapping population, Irzykowska
and Wolko [159] mapped five QTLs governing SPC on LG2, LG5, and LG7, explain-
ing 13.1–25.8% PV. Subsequently, two F5 mapping populations developed from Wt11238
×Wt3557 and Wt10245 ×Wt11238 revealed a QTL for protein content on LGVb flanked
by cp, gp, and te markers [118]. Likewise, genotyping an Orb × CDC Striker RIL mapping
population with SNP markers identified two SPC QTLs on LG1b, explaining 16% PV, and
two on LG4a, explaining 10.2% PV, and genotyping a Carerra × CDC Striker RIL-based
mapping population identified four SPC QTLs on LG7b, explaining 13% PV, and one on
LG3b [160].

An evaluation of a Terese × K586 RIL population in five different environments
identified 14 SPC QTLs located on LGI, LGIII, LGIV, LGV, LGVI, and LGVII [119]. The
study identified the underlying candidate gene for the QTL on LGI as the Rgp gene (cell wall
synthesis) and two underlying candidate genes for the QTL on LGV as Ls (GA biosynthesis)
and Rbcs4 (encoding small Rubisco subunit) [119].

Obala et al. [157] gained insight into the genetic determinants controlling SPC in
pigeonpea based on the results obtained from five F2 populations segregating for SPC (ICP
11605 × ICP 14209, ICP 8863 × ICP 11605, HPL 24 × ICP 11605, ICP 8863 × ICPL 87119,
and ICP 5529 × ICP 11605). Fourteen major effect QTLs explaining 23.5% PV were found
to be located on CcLG02, CcLG03, CcLG06 and CcLG11 [157].

In soybean, the SPC trait is controlled by multiple alleles and highly influenced
by G × E interactions [150]. More than 300 QTLs contributing to SPC in soybean have
been reported (http://www.soybase.org, (accessed on 10 May 2022)); [161] and reside
across all chromosomes; however, major SPC QTLs are on chromosomes 5, 15, and 20.
Diers et al. [155] first reported a major QTL governing high SPC on chromosome 20 in a
population developed from crossing cultivated and wild soybean, which was later mapped
to a 3 cM on LGI (Nichols et al., 2006) [156]. The location of this QTL was subsequently
narrowed to 8.4 Mb [162], <1 MB [163], 77.4 kb [137], and even with only three candidate
genes [131] on LG20. Likewise, another major SPC QTL, qSeedPro_15, was narrowed to 4 Mb
(Zhang et al. [164]; see Table 3), overlapping the previously identified genomic region on
chromosome 15 [24,131,155,165,166]. Zhang et al. [164] elucidated a possible candidate
gene Glyma.15G049200 underlying the QTL. Genotyping recombinant inbred lines derived
from the interspecific cross of Williams 82 × G. soja (PI 483460B) using Illumina Infinium
BeadChip sequencing platform identified five SPC QTLs, mapped on chromosomes 6, 8,
13, 19, and 20, explaining 4.6–19.6% PV [167]. Of these identified QTLs, qPro_20 QTL was
stable across the four tested environments.

SSR, DArT, and DArTseq analysis of five RIL-based mapping populations for high
and low SPC and one high × high SPC identified two major QTLs controlling SPC on LG15
and LG20 in soybean [168]. Furthermore, bulk segregation analysis of four high × low SPC
mapping populations unveiled novel SPC-controlling genomic regions on LG1, 8, 9, 14, 16,
17, 19, and 20 [168]. An assessment of soybean RILs developed from Linhefenqingdou ×
Meng 8206 in six different environments identified 25 SPC QTLs explaining up to 26.2%
PV [169]. Of the identified QTLs, qPro-7-1 was highly stable across all tested environments.
Recently, Fliege et al. [137] cloned a major SPC governing QTL (cqSeed protein-003) and

http://www.soybase.org
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elucidated the underlying causative candidate gene Glyma.20G85100, encoding a CCT
domain protein. Thus, efforts are needed to fine map or clone major QTLs controlling SPC
in other grain legumes to delineate the underlying candidate gene(s) and their function for
genomic-assisted breeding to improve SPC in grain legumes.

Table 3. List of seed protein content QTLs reported in various grain legumes.

Crop Mapping Population/Panel of Genotypes QTL/Gene Marker LG PV% References

Chickpea GWAS, 187 4 QTLs, 9 significant MTAs SSR LG3, 5 2.4–5.1 [81]
GWAS, 336 6 candidate genes SNP – 41 [170]

ICC 995 × ICC5192, RIL (189) q-3.2 SNP LG3 44.3 [158]

Common
bean Xana × Cornell 49242, RIL (104)

SpA, SpB, SpE, SpI, SpJ, Pha,
SpF, SpG, SpK, SpL, SpM,

SpC, SpD

AFLP, RAPD, ISSR,
SCAR LG7, 4, 3, 1 [171]

Xana × Cornell 49242, RIL (104) One QTL SSR PV07 – [172]
Ground

nut TG26 × GPBD 4, RIL (146) 8 QTLs SSR LG1, 3, 4, 7, 8 1.5–10.7 [173]

Pea 1238 × 1263, 110 × 807, 110 × 851 (F2) Convicillin (Cvc), Legumin
(Lg-1) Protein marker LG2, 7 – [145]

360 × 611 (F2) Vicilin (Vc-1) – LG7 – [146]

Wt10245 ×Wt11238, F2 (114) prot1 prot2 prot3 prot4 prot5 AFLP, RAPD, ISSR,
STS, CAPS LG2, 5, 7 13.1–25.5 [159]

Térèse’ × K586, RIL (139) 14 QTLs – [119]
Wt11238 ×Wt3557 (F5), Wt10245 ×

Wt11238 (F5) One QTL AFLP, RAPD, STS,
CAPS, ISSR LGVa, 5b – [118]

GWAS, 50 One significant SNP SNP – – [120]
Orb × CDC Striker, Carrera × CDC

Striker 8 QTLs SNP LG1b, 4a 16 [160]

1–2347–144 × CDC Meadow LG3b, 7b
GWAS, 135 genotypes Chr3LG5_194530376 SNP – [174]

GWAS, 135 Chr3LG5_138253621,
Chr3LG5_194530376 SNP LG3, 5 – [174]

9 populations, RIL (1213) 21 QTL SNP – – [123]

Pigeonpea
ICP11605 × ICP 14209, ICP 8863 × ICP
11605, HPL 24 × ICP 11605, ICP 8863 ×

ICPL 87119, ICP 5529 × ICP 11606
48 M-QTLs for SPC SNP CcLG03, 11, 02,

06 0.7–23.5 [157]

Soybean Parker × PI 468916 Two major quantitative
trait locus (QTL) alleles – LG20 – [136]

A3733 × PI 437088A, RIL (76) One QTL
Satt496 and Satt239,

RAPD marker
OPAW13a

LG20 – [175]

Essex ×Williams LG6 [176]
PI 97100 × Coker 237 LG15, 20 [177]

N87-984-16 × TN93-99 LG18 [178]

N87-984-16 × TN93-99, F6 (101) 4 QTL for cysteine, 3 QTL
for methionine

Satt235, Satt252,
Satt427, Satt436 D1a, F, G – [102]

Satt252, Satt564,
Satt590 F, G, M

A81356022 × PI 468916 – LG20 [156]
G. soja (PI468916) × G. max (A81-356022)

backcrossing One QTL SSR, AFLP LG1 – [162]

G. max A81-356022 × G. soja PI468916,
near isogenic lines One QTL, 13 genes SNP LG20 [162]

Magellan × PI 438489B LG15, 5, 6 [165]
ZDD09454 × Yudou12 LG18, 20 [179]

GWAS, 298

17 genomic regions,
Glyma20g19680,
Glyma20g21030,
Glyma20g21080,
Glyma20g19620,

Glyma20g196030,
Glyma20g21040

SNP LG8, 9, 20 – [180]

IL-1964 (619 accessions), IL-1966 (977
accessions), MS- 1996 (728 accessions),

MS-2000 (934 accessions)
– SNP LG20 – [163]

ZYD2738 × Jidou 12, F2:3, ZYD2738 ×
Jidou 9, F2:3

qPRO_2_1, qPRO_13_1,
qPRO_20_1, qPRO_6_1,

qPRO_18_1
SSR LG2, 6, 13, 18, 20 6.6–14.5 [181]

Benning × Danbaekkong 4 QTLs LG14, 15, 17, 20 55 [132]
R05-1415 × R05-638 LG14, 20 [182]

GWAS, 139 qPC19 and 8 significant
genomic regions SNP LG5, 8, 10, 14, 16,

19 10.3 [183]

SD02-4-59 × A02-381100 (RIL), SD02-911
× SD00-1501 (RIL) 8 QTLs – – – [184]

Danbaekkong × Glycine soja (PI468916) wp allele, cqSeed
protein-003 – LG20 – [185]

G. max (Williams 82) × G. soja (PI 483460B) 5 QTLs: qPro_06, qPro_19,
qPro_20, qPro_08, qPro_13 SNP LG6, 8, 13,19, 20 4.6–19.6 [167]
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Table 3. Cont.

Crop Mapping Population/Panel of Genotypes QTL/Gene Marker LG PV% References

GWAS, 144 lines derived from four
parents

Glyma.03G100800,
Glyma.10G207300,
Glyma.12G019300,
Glyma.12G112900,
Glyma.14G081600,
Glyma.18G028600,
Glyma.18G07110,
Glyma.18G071300

SNP LG1, 2, 3, 4,6,7, 9,
10,12, 14, 18 3.84–19.21 [186]

– 192 collinear protein QTLs,
13 candidate genes – – – [187]

Linhefenqingdou ×Meng 8206 RIL (104) 25 main effect QTLs SNP
LG1, 4, 6, 7, 8, 9,
10, 13, 14, 17, 18,

19, 20
5.7–26.22 [169]

GWAS, 621 accessions

Three genomic regions, 16
significant SNPs,
Glyma.15g049100,
Glyma.15g049200,
Glyma.15g050100,
Glyma.15g050600

SNP LG4, 5, 8, 9, 10, 13,
15, 19, 20 – [188]

GWAS, 185 rs53140888, rs19485676,
rs24787338 SNP Chromosomes 1,

13, 20 – [189]

Three significant SNP
markers

(Kenfeng14× Kenfeng15) ×
(Heinong48×Kenfeng19), RIL (160) 34 QTLs SSR 2.65–13.83 [189]

G15FN-12 mutant – SoySNP50K
BeadChip LG12 – [190]

GWAS, 249 25 significant MTAs SNP LG2, 6, 7, 10, 13,
14, 16, 17, 18, 19 – [191]

AC Proteusx Maple Arrow F5, RIL 5 QTLs SSR, DArT and
DArTseq LG15, 20, 2, 18 70% [168]

X3145-B-B-3-15 × 9063, F5, RIL;
X3145-B-B-3-15 × AC Brant, F5, RIL;

X3144-48-1-B/9063, F5, RIL; X3144-48-1-B
× AC Brant, F5, RIL; X3145-B-B-3-15 ×

X3144-48-1-B, F5, RIL

LG1, 8, 9, 14, 16,
17, 19, 20

AC X790P × S18-R6′ and ‘AC X790P ×
S23-T5, RILs

qPro_Gm02–3,
qPro_Gm04–4,
qPro_Gm06–1,
qPro_Gm06–3,

qPro_Gm06–6, qPro_
Gm13–4, qPro-Gm15–3

SNP LG1, 2, 4, 5, 6, 8,
12, 13, 15, 18 10.4–21.9 [192]

GWAS, 211 qPC-7-1, qPC-13-1,
qPC-15-1 SNP LG7, 13, 15 18–34 [164]

(Kenfeng 14×Kenfeng 15)× (Heinong
48×Kenfeng 19) 85 QTL, 123 QTNs 2,232 SNPs and

63,306 SNPs – – [193]

G00-3213 × PI 594458A, 132 RIL 16 QTLs SoySNP6k
BeadChip LG3, 6, 13, 20 [194]

GWAS, 165 138 significant MTA, SNP LG7 – [195]
Glyma.07g175700 and

Glyma.07g176000
RIL, 944, Primus × Protina, Gallec ×
Sigalia, Primus × Sigalia, Protina ×

Sigalia, Gallec × Primus, Gallec × Protina,
Sultana × Sigalia, Gallec × Protina, Gallec
× Protina, Gallec × Sigalia, Primus ×

Sultana

qPY1, qPY2, qPY3, qPY4,
qPY5, qPY6, qPY7 SNP LG5, 6, 7, 8, 16, 18,

19, 20 15.5–60 [196]

‘Nanxiadou 25′× Tongdou 11, RIL (178)

50QTLs, three candidate
genes: Glyma.20G088000,

Glyma.20G111100,
Glyma.20 g087600

SNP
LG1, 2, 3, 5,6, 7, 8,

9, 10, 11, 13, 15,
16, 20

- [197]

PI 468916 × A81-356022, BC Glyma.20G85100, cqSeed
protein-003 QTL SNP LG20 - [137]

250, F2 3 QTLs Infinium Soy6KSNP
Beadchips LG6, LG13, LG20 - [198]

AFLP = Amplified fragment length polymorphism; SNP = Single nucleotide polymorphism, SCAR = Sequenced
cleaved amplified region, CAPS = cleaved amplified polymorphic sequence, RAPD = Random Amplified poly-
morphic DNA, SSR = Simple Sequence Repeats, ISSR = Inter Simple Sequence Repeat.

6. Underpinning Genomic Region/Haplotypes Controlling High Protein Content
through GWAS

Traditional biparental QTL mapping for obtaining genetic recombinants controlling
complex traits such as protein content is limited due to the incorporation of only two
parents in the crossing program. However, the increased capacity of next generation
sequencing technology to derive single nucleotide polymorphism molecular markers in
association with advanced phenotyping facilities has facilitated the development of numer-
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ous genetic recombinants and identification of the underlying plausible candidate genomic
regions controlling protein content in various grain legumes using GWAS [81,174,183,186].
Jadhav et al. [81] performed association mapping for SPC using SSR markers on a panel
of 187 chickpea genotypes (desi, kabuli, and exotic). Nine significant marker trait associations
(MTAs) for SPC were uncovered on LG1, LG2, LG3, LG4, and LG5, explaining 16.85% PV. A
recent GWAS using high-throughput SNP markers on 140 chickpea genotypes subjected
to drought and heat stress to shed light on MTAs with various nutrients uncovered 66
(non-stress), 46 (drought stress), and 15 (heat stress) MTAs for SPC [199], which could be
used to identify high-protein lines for improving SPC in chickpea.

A GWAS relying on multilocation and multi-year phenotyping of a large set of pea
germplasm representing diverse regions across the globe was undertaken to identify signifi-
cant MTAs for agronomic and quality traits, including protein content [174]. Two significant
MTAs controlling SPC were identified: Chr3LG5_138253621 and Chr3LG5_194530376.

GWAS using 16,376 SNPs in 332 chickpea genotypes (desi and kabuli) delineated seven
genomic loci controlling SPC and explaining 41% combined PV [170]. The authors also vali-
dated five SPC-controlling genes in a RIL-based mapping population ICC 12299 × ICC 4958,
encoding cytidine (CMP), deoxycytidylate (dCMP) deaminases, ATP-dependent RNA heli-
case DEAD-box, and zinc finger protein. An earlier comprehensive GWAS of 298 soybean
lines using Illumina Infinium and GoldenGate assays identified 17 significant genomic
regions controlling SPC [180]. Among the SPC-controlling genomic regions, LG20 was im-
portant as it contained six candidate genes Glyma20g19680, Glyma20g21030, Glyma20g21080,
Glyma20g19630, Glyma20g19620, and Glyma20g21040 in the 2.4 Mbp interval. Another
GWAS performed on 139 soybean lines revealed eight significant regions contributing
to SPC on LG5, LG8, LG10, LG14, LG16, LG19, and LG20 [183]. In addition, a major
QTL qPC19 controlling SPC on LG19 in the 42.3 to 44.2 Mb interval explained 10.3%
PV [183]. Likewise, an assay using SoySNP660k BeadChip in 144 soybean lines developed
from four-way RILs identified eight candidate genes controlling SPC: Glyma.03G100800,
Glyma.10G207300, Glyma.12G019300, Glyma.12G112900, Glyma.14G081600, Glyma.18G028600,
Glyma.18G07110, and Glyma.18G071300 (Zhang et al. [186]; see Table 3). A comprehensive
GWAS study in a collection of 877 soybean accessions, tested in five different environ-
ments in Midwest and southern USA using SoySNP50K iSelect BeadChip [188], identified
significant genomic regions for SPC that coincided with previous QTL/genomic regions
identified on chromosomes 15 and 20 [161,166]. Three SNPs identified within 91 kb over-
lapped the 118 kb genomic region of meta-QTL controlling SPC and seed oil content
previously reported by Van and McHale [161]. Some important candidate genes identi-
fied in these genomic regions—Glyma.15g049100 Glyma.15g049200, Glyma.15g050100, and
Glyma.15g050600—participate in partitioning carbon and regulating protein content (Lee
et al. [188]; see Table 3). The authors also elucidated eight novel genomic regions control-
ling methionine, cysteine, lysine, and threonine contents. A GWAS using whole genome
sequencing data of 631 soybean accessions combined with a biparental QTL analysis un-
covered a pleotropic gene GmSWEET39 (encoding sugar transporter) controlling SPC and
seed oil content in soybean [164]. The authors also reported that a 2 bp (CC) deletion in
Glyma.15G049200 underlying the GmSWEET39 allele rendered high seed oil content and
low SPC.

A comprehensive association and linkage analysis surveyed 985 soybean accessions,
including wild species, landraces, and old and modern cultivars, to capture haplotypic
variation in the high SPC locus cqProt-003 on chromosome 20 [200]. The study uncovered
significant trait-associated genomic regions within a 173 kb linkage block containing three
causal candidate genes: Glyma.20G084500, Glyma.20G085250, and Glyma.20G085100 [200].
Of these, Glyma.20G085100 (containing a 304 bp deletion and trinucleotide insertions) was
tightly linked with the high protein content phenotype [200].
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7. Functional Genomics Shedding Light on Causal Candidate Gene(s) Contributing
Seed Protein Content in Grain Legumes

In the last decade, unprecedented advances in RNA sequencing have expedited func-
tional genomics research, especially transcriptome analysis for discovering trait gene(s), in
various grain legumes [197]. Numerous studies have elucidated various SPC-contributing
candidate gene(s) and their functional roles in grain legumes; notably, cDNA cloning
based functional characterization of genes encoding storage proteins such as pea seed
albumin (PA1, PA1b) [201] and conglutin family in narrow leaf lupin [202]. Functional
characterization of genes encoding storage protein in narrow leaf lupin by sequencing
cDNA clones from developing seed identified 11 new storage protein (conglutin family)-
encoding genes [202]. Transcriptome analysis via RNA-seq shed light on 16 conglutin genes
encoding storage protein in the Tanjil cultivar of narrow leaf lupin [203]. Conglutin gene(s)
expression is similar in lupin varieties of the same species but distinct between species [203].
In soybean, functional genomic analysis via gene expression profiling identified 329 differ-
entially expressed genes underlying qSPC_20–1 and qSPC_20–2 QTL regions accounting
for SPC using a QTL-seq approach [197]. Of the nine candidate genes underlying these
QTL regions, Glyma.20G088000, Glyma.20G111100, and Glyma.20 g087600 were functionally
validated and identified as the most potential candidate genes controlling SPC [197]. RNAi
technology—a robust functional genomic tool—offered novel insight into the regulatory
role of Glyma.20g085100 harboring transposon insertion in the SPC-controlling genomic
region of soybean [137]. Reduced expression of Glyma.20g085100 using RNAi enhanced the
protein level in the low-protein Thorne soybean genotype [137]. Most functional genomics
studies identifying SPC-controlling candidate genes with their putative function in major
legumes have involved soybean; thus, studies should focus on elucidating candidate genes
and deciphering the molecular mechanism for improving SPC via functional genomics in
other grain legumes.

8. Proteomics and Metabolomics Shed Light on the Genetic Basis of High Seed Protein
Content in Legumes

Proteomics helps us understand the entire set of proteins produced at a specific
time under a particular set of conditions in an organism or cell [204]. This approach
could be used to discover novel seed storage proteins and inquire about the molecular
basis of enhancing SPC in various legumes [205]. A novel protein known as methionine-
rich protein was discovered in soybean using a two-dimensional (2D) electrophoresis
technique [205]. Later, a 2D-PAGE proteomic tool distinguished wild soybean (G. soja)
from cultivated soybean based on high storage proteins (beta-conglycinin and glycinin)
detecting 44 protein spots in wild soybean and 34 protein spots in cultivated soybean;
thus, this helped in identifying high-protein soybean genotypes [206]. Combined SDS-
PAGE and MALDI-TOF MS analysis in LG00-13260, PI 427138, and BARC-6 soybean
genotypes revealed enhanced accumulation of beta-conglycinin and glycinins and thus
high grain protein content compared to William 82 ([207]; see Table 4). A combined
SDS-PAGE and MALDI-TOF MS analysis, comparing protein content in nine soybean
accessions with William 82, revealed significant protein content differences in seed 11S
storage globulins [208]. In common bean, proteome analysis of common bean deficient in
seed storage proteins (phaseolin and lectins) revealed elevated sulfur amino acid content
due to increased legumin, albumin 2, and defensin [209]. Santos et al. [210] characterized
the protein content of 24 chickpea genotypes using a proteomics approach to explore
genetic variability in storage protein. High-performance liquid chromatography analysis
indicated the presence of sufficient genetic variability for SPC, with some genotypes rich in
seven amino acids. In pea, a mature seed proteome map of a diverse set of 156 proteins
identified novel storage proteins for enhanced SPC [211].
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Table 4. Proteomic approach for investigating novel proteins for improving seed protein content in
grain legumes.

Crop Protein Identified Approach Used Reference Genotype

Chickpea High amino acid content, 454
protein spots

Two-dimensional electrophoresis
and mass spectrometry [210] Flip97-171C, Elite

Common bean Sulfur-containing amino acids,
S-methylcysteine accumulation

High resolution liquid
chromatography-tandem mass

spectrometry
[212] –

Sulfur-containing amino acids;
enhanced concentration of
cysteine and methionine

Mass spectrometry [213] SARC1 and
SMARC1N-PN1

Faba bean Amino acid metabolism iTRAQ [56] Cixidabaican

Legumin, vicilin, and convicilin
1D SDS-PAGE, size-exclusion

high-performance liquid
chromatography

[214] Cartouche, NV657,
NV734

Narrow-leafed lupin 2760 protein identifications LC-MS [215] P27255, Tanjil,
Unicrop

Pea 156 proteins 2-D gels, MALDI-TOF MS [211] Caméor

Soybean High arginine content in
Nepalese

MALDI-TOF; two-dimensional
gel electrophoresis [141] Nepalese, Karve, Seti

High beta-conglycinin and
glycinins

Two-dimensional electrophoresis
SDS-PAGE [207] LG00-13260

High 11S storage globulins SDS-PAGE, MALDI-TOF,
two-dimensional electrophoresis [208] PI407788A

High storage protein 2D-PAGE [206] Wild soybean
Asparagine, free 3-cyanoalanine,

and L-malic acid GC-TOF/MS [216]

An iTRAQ-based proteomics analysis of CX (low SPC) and LX (high SPC) faba bean
genotypes revealed differentially abundant proteins involved in amino acid metabolism [56].
Furthermore, a KEGG analysis suggested that valine, leucine, histidine, and β-alanine
metabolism were significantly enriched by differentially abundant proteins [56].

Likewise, metabolomic studies help us understand various metabolic pathways and
metabolites controlling protein accumulation during seed development [217]. A meticulous
amino acid profiling study using contrasting high and low SPC soybean lines revealed that
the ability of embryos to assimilate nitrogen and synthesize storage proteins determines
SPC accumulation [217]. Further, the authors reported that high SPC at maturity is related
to increased accumulation of asparagine in developing cotyledons.

A metabolomics study using GC-TOF/MS in contrasting seed protein soybean lines
showed a high abundance of metabolites (asparagine, aspartic acid, glutamic acid, free
3-cyanoalanine) that were positively associated with SPC and negatively associated with
seed oil content [216]. However, various sugars (sucrose, fructose, glucose, mannose) had
negative associations with seed protein and oil content [216]. Saboori-Robat et al. [218]
undertook metabolite profiling of common bean genotypes differing in S-methylcysteine
accumulation in seeds and found that S-methylcysteine accumulates as γ-glutamyl-S-
methylcysteine during seed maturation, with a low accumulation of free methylcysteine.
Amino acid profiling of Valle Agricola, a nutritionally rich chickpea genotype cultivated
in southern Italy, revealed that 66% of the total amino acids comprised glutamic acid,
glutamine, aspartic acid, phenyl alanine, asparagine, lysine, and leucine, while ~40%
comprised histidine, valine, isoleucine, leucine, methionine and threonine [219]. Further
advances in metabolomics could improve our understanding of various cellular metabolism
networks and pathways related to SPC in legumes. Thus, integrating various ‘omics’ tools
and emerging novel breeding approaches could assist in developing protein-fortified grain
legumes (see Figure 1).
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9. Progress of Genetic Engineering and Scope of Genome Editing for Improving SPC
in Grain Legumes

Numerous studies have been undertaken to improve the essential amino acid content
in various grain legumes by manipulating amino acid encoding genes using genetic engi-
neering [220–222]. Many examples of improved essential amino acid contents, especially
sulfur-rich amino acids, by manipulating gene(s) in various legumes using transgenic
technology are available. Chiaiese et al. [223] introduced an albumin transgene encoding
methionine and cysteine-rich protein from sunflower seed into chickpea to improve seed
methionine content. The transgenic chickpea seed accumulated more methionine than the
control. Likewise, Molvig et al. [224] improved seed methionine content in narrow leaf
lupin by introducing sunflower seed albumin transgene at the transgenic level. However,
cysteine-rich storage proteins, especially conglutin delta, declined in narrow leaf lupin seed
due to low expression of the cysteine-encoding gene (Tabe and [225]; see Table 5). Intro-
ducing Bertholletia excelsa methionine-rich 2S albumin gene into common bean enhanced
seed methionine content by more than 20% over non-transgenic plants [220]. Improving
sulfur-rich amino acids, such as methionine and cysteine, in soybean has been a research
priority, made possible by introducing the 15 kDa [226], 27 kDa [227], and 11 kDa [221,228]
δ-zein encoding protein genes from maize using genetic engineering.

Table 5. Selected list of grain legumes with improved seed protein content using a genetic engineering
approach.

Crop Gene
Source Gene Name Function References Transformation Approach

Chickpea Sunflower Sunflower seed albumin Increased methionine up to 90% [223] Agrobacterium tumefaciens
Common bean Brazilnut Brazilnut 2S albumin Increased methionine by 14–23% [220] Particle bombardment

Narrow-leafed lupin Sunflower Sunflower seed albumin Increased methionine by 90% [224,225] Agrobacterium tumefaciens
Arabidopsis Serine acetyltransferase 26-fold increase in free cysteine [229] Agrobacterium tumefaciens

Soybean Maize 15 kDa δ-zein Increased methionine by 20% and
cysteine by 35% [226] Agrobacterium tumefaciens

Maize 27 kDa γ-zein
Increased methionine from 15.49 to
18.57% and cysteine from 26.97 to

29.33%
[227] Particle bombardment

Maize 11 kDa δ-zein Methionine [221] Agrobacterium tumefaciens

MB-16 Increased methionine by 16% and
cysteine by 66% [230] Biolistic

Soybean Soybean plastid ATP
sulfurylase isoform 1

Increase cysteine by 37–52% and
methionine by 15–19% [228] Agrobacterium tumefaciens

Maize 11 kDa δ-zein Increased sulfur amino acids [222] Agrobacterium tumefaciens
Soybean Glyma.20g085100 Enhance protein content [137] RNAi technology
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Despite some successes introducing transgenes to enhance SPC in grain legumes at
the transgenic level, transgenic regulatory or governing bodies do not allow or restrict
the use of these genetically engineered improved grain legumes commercially due to
health and environmental safety issues. To overcome these stringent issues related to
genetically modified crops, rapidly evolving genome editing technologies could help
develop enhanced-protein grain legumes without introducing foreign genes. Using genome
editing technologies, various crop plants have improved quality traits, such as increased
fragrance and low gluten, starch, or oleic acid contents (for details, see [231]). However,
the use of genome editing for SPC fortification in grain legumes is limited; future studies
could adopt these powerful technologies to improve SPC by editing various gene(s), such
as those encoding essential sulfur-rich amino acids or improving storage proteins.

10. Whole Genome Resequencing and Pangenome Sequencing for Elucidating Novel
Structural Variants Related to High SPC across the Genome

Current breakthroughs in genome sequencing technologies have facilitated the se-
quencing of the global germplasm of various crops, including legumes, to underpin novel
structural variants (SVs) such as presence/absence and copy number variations prevailing
at the genome level [232,233]. An analysis combining association and biparental mapping
using WGRS data of 631 soybean genotypes discovered a pleiotropic sugar transporter
QTL gene GmSWEET39 on chromosome 15 controlling SPC and seed oil content [164]. The
authors suggested that deletion of 2 bp CC in the underlying causative Glyma.15G049200
gene reduced SPC and enhanced seed oil content. Likewise, a pangenomic approach can
describe the full complement of genes in the ‘core genome’ and ‘accessory genome’ to
capture structural variation (not available in ‘single reference genome assembly’) at the
species level [232]. Pangenome assemblies have been reported in chickpea [233], pigeon
pea [234], soybean [235] and mungbean [236]. Thus, future construction and annotation of
pangenomes for different grain legumes could reveal missing information on SPC structural
variations in the available reference genome assemblies, expediting the development of
grain legumes with enriched protein.

11. Non-Destructive Phenomics Approach for Quantifying High Protein Content in
Grain Legumes

Several high-throughput phenotyping approaches have been developed to bridge the
genotyping and phenotyping gap for various quality traits, including protein content [237–239].
Advances in high-throughput non-destructive phenotyping approaches such as hyperspec-
tral technologies, near-infrared reflectance spectroscopy, and nuclear magnetic resonance
have enabled the phenotyping of various biochemical attributes in cereal and legume
seeds, including protein content, with high accuracy and efficiency [237–241]. For example,
Raman spectroscopy has been used to measure SPC in soybean [237]. Earlier, near-infrared
reflectance spectroscopy was used to screen high-protein soybean genotypes [242,243].
Thus, non-destructive high-throughput phenotyping approaches could save time when
screening high-SPC lines.

12. Genomic Selection and Rapid Generation Advances for Selecting High SPC Lines
to Increase Genetic Gain

Unprecedented advances in genome-wide molecular marker development allow the
use of genomic selection (GS) for predicting the genetic merit of progenies with complex
traits without observing their phenotypic values from large target populations by devel-
oping a prediction model and calculating genomic-assisted breeding values in a ‘training
population’ with known phenotypic observation [244]. The benefit of GS for improving
genetic gain could be harnessed by increasing selection intensity (i) and selection accuracy
(I), and reducing the breeding cycle length (L) in the breeder’s equation: ∆G = R = h2S =
σa × i × r/L. [∆G = genetic gain, R = response to selection, h2 = heritability, σa = additive
genetic variance]. Notable instances of using GS as a substitute for phenotypic selection
for complex traits include grain yield under moisture stress in chickpea [245], common
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bean [246], cowpea (Ravelombola et al., 2021) [247], and pea [248,249] and cooking time in
common bean [250]. However, GS has limited application for selecting high SPC genotypes
in legumes [251]. A rrBLUP model was used to predict SPC in 306 pea genotypes derived
from three RILs, tested in three autumn seasons in northern and central Italy, to determine
any advantage of GS over phenotypic selection for SPC [251]. The mean predictive ability
of GS for SPC was 0.53. Future studies could use GS to improve SPC and select various
grain legume progenies with high SPC without phenotyping.

Likewise, the emerging benefits of speed breeding techniques could be harnessed by
using optimum light intensity, photoperiod and temperature to enhance the rate of photo-
synthesis, resulting in early flowering and plant maturity, thus shortening the breeding
cycle [252]. Speed breeding protocols have been established in chickpea, lupin, lentil, pea,
soybean, and faba bean [253–257]. Further optimization of speed breeding protocols could
fast-track improvements in various traits of breeding importance, including SPC, in grain
legumes for sustaining global food security.

13. Fundamental Constraints on Seed Protein Content

As the offspring of plants, seeds are subject to several fundamental trade-offs that
impact their size and composition. Seeds have fundamental required components, such
as cell walls, and some amount of carbohydrates, lipids, and nucleic acids to make a
viable embryo. Consequently, there are limits to potential selection on protein content.
For example, long term selection on maize seed oil content has shown limits to the power
of selection (e.g., [258]). Over the past two or more decades, ecologists have increasingly
conceptualized these trade-offs as part of an economic spectrum, which influences the range
of traits observed in leaves [259,260], stems [261,262] and roots [263]. As a dispersal unit,
seeds are able to travel farther if they are smaller, but establish more readily if larger [264].
In many individual legume crops, wild relatives have presumably been under millenia
of selection for these trade-offs in seed size and composition, limiting genetic variation
and architecture. However, few researchers have linked evolutionary and ecological limits
on seed composition to efforts at breeding, nor looked carefully at how they impact seed
protein content. Seed size is generally an important co-variate in seed protein content,
although among legumes its role differs somewhat among grain legumes.

Recent elegant work in chickpea suggests that these constraints are in fact real, and
shape contemporary genetic diversity in seed size and composition. Chickpea has a QTL
hotspot for seed size, leaf size, drought responses, and other “Vigour” traits. Nguyen and
colleagues have recently fine mapped this QTL [265,266] showing it to be due to variation
in a TIFY gene, which mutant studies in Arabidopsis have shown to impact seed size.
Natural variation at this locus suggests it contributes significantly to a seed-size number
trade-off, among parents that also differ in seed protein content.

14. Conclusions and Future Perspective

The increasing human population is facing increasing malnutrition-related problems
such as dietary protein deficiency, especially in underprivileged and developing countries.
Supplying protein-rich legumes improved through plant breeding and molecular breed-
ing approaches could minimize the rising challenge of hunger and malnutrition-related
problems. Moreover, improved grain legume dietary protein could be an important and
economically viable alternative to high-cost animal-based dietary protein. Protein bioforti-
fication of major grain legumes will help satisfy the daily needs of human dietary protein
in underprivileged and developing countries. Accurate characterization of various crop
gene pool and landrace haplotypes with genetic variation for SPC needs urgent attention
to accelerate SPC improvement in legumes. Harnessing the benefits of pre-breeding ap-
proaches could play a pivotal role in introgressing gene(s)/QTLs regulating high protein
content from CWRs into high-yielding low-protein elite legume cultivars [96]. Recent ad-
vances in genomics, genome-wide association mapping, and whole genome resequencing
approaches and the availability of complete genome and pangenome sequences in vari-
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ous legume crops could help underpin the causative alleles/QTLs/haplotypes/candidate
genes controlling high protein at the genome level, enabling genomics-assisted selection
for improving protein concentration in grain legumes. Likewise, functional genomics,
proteomics, and metabolomics could enrich our understanding of the complex molecu-
lar networks controlling improved protein content in various grain legumes. Selecting
protein-rich grain legume genotypes in assessed germplasm or segregating progenies is
challenging as most protein-estimating processes are based on destructive methods. Thus,
high-throughput non-destructive methods are important for selecting high-protein legume
genotypes. Likewise, genomic selection and rapid generation advances could be important
for selecting high-protein progenies and rapidly developing protein-dense legumes. To
overcome the challenges of transgenic technology, genome editing will help us manipulate
and edit genes(s) governing high protein content at specific locations on legume genomes
to enhance SPC. Capitalizing on these modern breeding tools, we should be able to identify
grain legumes with improved protein content without compromising yield, as these two
traits have a strong inverse relationship [123]. Hence, the amalgamation of approaches
could help combat the growing protein-based malnutrition and lower the hunger risk,
ensuring sustainable human growth globally.
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