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a b s t r a c t 

Insights into the eukaryotic gene regulation networks have improved due to the advent of diverse 

classes of non-coding RNAs. The transfer RNA (tRNA)-derived non-coding RNAs or tncRNAs is a 

novel class of non-coding RNAs, shown to regulate gene expression at transcription and translation 

levels. Here, we present a pipeline ‘tncRNA Toolkit’ for accurately identifying tncRNAs using small 

RNA sequencing (sRNA-seq) data. Previously, we identified tncRNA in six major angiosperms 

by utilizing our pipeline and highlighted the significant points regarding their generation and 

functions. The ‘tncRNA Toolkit’ is available at the URL: http://www.nipgr.ac.in/tncRNA . The 

scripts are written in bash and Python3 programming languages. The program can be efficiently 

run as a standalone command-line tool and installed in any Linux-based Operating System (OS). 

The user can run this program by providing the input of sRNA-seq data and genome file. 

The various features of the ‘tncRNA Toolkit’ are as follows: 

• Major tncRNA classes identified by this tool include tRF-5, tRF-3, tRF-1, 5 ′ tRH, 3 ′ tRH, and 

leader tRF. Also, it categorizes miscellaneous tncRNAs as other tRF. 

• It provides the following information for each identified tncRNA viz. tncRNA class, raw and 

normalized read count (RPM), read length, progenitor tRNA information (amino acid, 

anticodon, locus, strand), tncRNA sequence, and tRNA modification sites. 

• We hope to facilitate quick and reliable tncRNA identification, which will boost the explo- 

ration of this novel class of non-coding RNAs and their relevance in the living world, 

including plants. 
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Introduction and background 

The abundance of non-coding RNAs (ncRNAs) repertoire with various regulatory functions has been well identified and docu- 

mented over the last ten years due to a significant development in molecular biology. They are effective post-transcriptional, epige-

netic, and transcriptional regulators of gene expression in living systems [1] . The discovery of short untranslated RNAs, other than

microRNAs (miRNAs) and small interfering RNAs (siRNAs), has been dramatically improved by developing high-throughput sequenc- 

ing technologies. In all three domains of life, tRNA-derived non-coding RNAs (tncRNAs) have been identified [2] . This particular class

of regulatory RNAs is generated by the endonucleolytic cleavage of mature or precursor transfer RNAs (tRNAs) [3] . In addition to

the well-known shorter tRNA-derived RNA fragments (tRFs) [4] or tRNA-derived RNAs (tDRs) in a size range of 14 to 30 nucleotide

(nt) [5] , longer tRNA halves (tRHs) of length 30 to 40 nt [6] , are also considered as tncRNAs [7] . Their production depends on the

nature of tRNA, cell type, developmental stage, stress, and tissue [8] . Also, nuclear and organellar tRNAs can be the source of these

molecules [9] . In different types of cancers [ 10 , 11 ], and plant stresses [12] , this family of short RNAs has received much attention.

By association with their cognate target mRNAs or proteins, some tRFs alter the cell’s gene expression and translation process [13] . 

Identifying tncRNAs in small RNA-seq (sRNA-seq) datasets is extremely difficult and error-prone [14] . Extensively altered tRNA 

nucleosides impact reverse transcription, leading to nucleotide truncation or misincorporation during library preparation. This, in 

turn, raises the likelihood of a mismatch. But enabling a single mismatch to triumph over sequencing faults could result in base

misidentification, increasing the number of false negatives [15] . That’s because the 20 primary tRNA isotypes include both isodecoders

(tRNAs carrying the same anticodon with variations in the body sequence) and isoacceptors (tRNAs with various anticodons but

charged with the same amino acid), share a high degree of sequence similarity. For the identification of tRNA-derived reads, various

mapping techniques have been proposed. Some computational methods, such as tDRmapper [16] , MINTmap [17] , and tRF2Cancer 

[18] , are available for their detection; however, they were developed and evaluated on human datasets and are only appropriate for

use with human data. Compared to humans, tncRNAs have been less explored in the plant domain. While specialized plant databases,

such as tRex [19] and PtRFdb [20] , containing data related to the tRFs, have also recently been developed, a practical technique

for the precise identification and study of tncRNAs in plants is still absent. We have developed a pipeline for the quick and accurate

detection of tncRNAs [7] in plants, but it can be used for any species. 

Features of ‘tncRNA toolkit’ 

Genome index building, tRNA prediction, and read mapping 

At first, the tncRNA Toolkit takes the genome containing DNA sequences in FASTA format as input, runs tRNAscan-SE [21] , and

performs tRNA prediction using the genome sequence. For the nuclear genome, tRNAscan-SE runs on default mode. For the organellar

genome, the “-O ” mode is used. Due to the high number of tRNA gene copies predicted by tRNAscanSE, we first filter the predicted

tRNA gene pool by deleting pseudogenes and keeping true tRNAs based on the score. Only high-quality tRNAs with a score of 50 or

more are chosen for mapping since the score is a crucial indicator of the structural propensity of tRNA [22] . 

The genome is modified by masking the tRNA genes and their corresponding 50 nt upstream (leader) and downstream (trailer)

in the genome, thus called the masked genome. Pre-tRNA (5 ′ leader and 3 ′ trailer portion) and mature tRNA (addition of CCA tail at

3 ′ end) set are inserted as artificial chromosomes. Masked genome and artificial chromosomes combine to form an artificial genome,

and a bowtie index is created using bowtie build (bowtie v1.3) [23] . This index is further utilized for reads mapping. Filtered reads

(trimmed and high-quality reads) are provided as input to the tncRNA Toolkit. To prevent ambiguous reads from non-tRNA regions,

only those reads aligning to tRNA regions (artificial chromosomes) are considered for further tncRNA identification analysis. Also, 

it makes the normalization of tncRNAs better, as it calculates most of the mapped reads. HAMR [24] is used for tRNA nucleoside

modification detection from the mapped reads. 

The mapped reads from the previous step are utilized to create a FASTA file containing unique reads with the count, using SAM

flags 0 & 16 for single-end reads. Mapped unique reads are aligned to + strand only without mismatch, and multi-mapped reads are

discarded if alignment occurs more than 50 times, using bowtie1 with “–norc -v 0 -m 50 ″ arguments [23] . The bowtie combinatorial

arguments “–best ” and “–strata ” are used, which guarantees that reported singleton alignments are best in terms of the stratum. Then,

the output is used to identify locus, location, length of reads mapped to mature tRNA, and their 50 bp upstream and downstream

flank; based on that, reads are categorized into various tncRNA subtypes. The tRNA halves are classified by cleavage at the anticodon

loop (2 nt + 3 nt of anticodon + 2 nt = 7 nt), and information for the modification site from HAMR is added. 

tncRNA identification and classification 

The excision of pre-tRNA and mature tRNA leads to the biogenesis of several tncRNA subtypes. The pre-tRNA gives rise to leader

tRF and tRF-1/tsRNA [3] , whereas mature tRNA generates tRF-5, tRF-3 (with or without CCA), 5 ′ tRH, 3 ′ tRH (with or without CCA),

and internal tRF [25] . Thus, tncRNAs are classified based on tRNA origin and cleavage site. For accurate identification of tRNA-

derived reads, those reads will be classified as tncRNAs that map exclusively to the artificial chromosomes (i.e., tRNA set consisting

of CCA containing mature tRNA, 50 nt leader, and 50 nt trailer sequences). The reads identified as tncRNAs are categorized into tRF-5

(reads from 5 ′ end of mature tRNA), tRF-3 (reads from 3 ′ end of mature tRNA, with or without CCA), tRF-1 (from trailer portion

of pre-tRNA), leader-tRF (from leader region of pre-tRNA), 5 ′ tRH (from 5 ′ end of mature tRNA containing anticodon loop portion),
2 
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Fig. 1. The user interface of the homepage of the tncRNA Toolkit showing the download link. 

 

 

 

 

 

 

 

 

3 ′ tRH (from 3 ′ end of mature tRNA containing anticodon loop portion, with or without CCA), and other tRF (from internal region of

mature tRNA excluding extreme ends). 

Structure and usage of the tncRNA Toolkit 

The tncRNA-Toolkit can be downloaded from the tncRNA website, http://www.nipgr.ac.in/tncRNA/ (shown in Fig. 1 ). This dis- 

tribution includes the python3 script “tncRNAs.py ” and additional scripts in the ‘util’ folder ( Fig. 2 ). The prerequisites and installation

steps have been thoroughly explained in the manual page of tncRNA website. After completing the installation steps, this pipeline is

ready to run. 

First step: 

Building the bowtie index using the genome of interest (given as a fasta file) using the command below: 

python3 tncRNAs.py -g ⟨genome fasta ⟩ -s ⟨species name ⟩

This command will generate the bowtie index and needed files in “lib/indexes/ < provided species name > . ”

The example is shown below: 

python3 tncRNAs.py -g At_genome.fa -s Arabidopsis_thaliana 

It should be noted that the genome fasta header should start with “> chr[N um ] ”. Mitochondrial and plastid fasta headers also

should begin as “> chrMt ” & “> chrPt ”, respectively. This format will be helpful for the automation of scripts and the distinction of

nuclear & organellar regions. Once the index is built, the user can further analyze the processed sRNA single-end data for that species,

as shown in the second step. 

Second step: 

tncRNA identification using single end (processed and quality checked) small RNA-seq data in fastq format using the command

below: 

python3 tncRNAs.py -s ⟨species name ⟩ -i ⟨processed small RNA reads ⟩ -o ⟨output dir ⟩

It should be noted that the species name provided should be identical to the name provided for building the index in the first step.

Example: 
3 
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Fig. 2. Recursive list of tncRNA Toolkit directory in Tree format. 

Fig. 3. Screenshots of output files generated by tncRNA Toolkit, (A) tncRNAs.csv file showing the list of tncRNAs identified along with relevant 

information, (B) Alignment.txt file showing the tncRNA alignment on its progenitor tRNA, (C) Result.log file showing the summary of various 

class-wise tncRNA counts. 

 

python3 tncRNAs.py -s Arabidopsis_thaliana -i SRR1693713_trimmed.fq -o test_dir 

After the successful completion of this command, three output files will be generated in the output directory, viz. tncRNAs.csv,

Alignment.txt, and Result.log. 

tncRNA Toolkit output files 

In the provided directory with the ‘-o’ option as described above, the tncRNA Toolkit provides three result files: 
1. tncRNAs.csv 

4 



S. Zahra, A. Singh and S. Kumar MethodsX 10 (2023) 101991 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Various helpful information related to each tncRNA identified is provided in the output file (tncRNAs.csv) viz. tncRNA type,

parental tRNA locus information, tncRNA position on tRNA (start-end), strand, sequence, length, read count, RPM, nature, and 

position of modified nucleosides ( Fig. 3 A). 

2. Alignment.txt 

The alignment of each tncRNA sequence over its parental tRNA sequence, which includes mature tRNA, 5 ′ leader, and 3 ′ trailer

precursor tRNA sequences, is shown in this file, including the alignment score, along with some basic meta-data from tncRNAs.csv

( Fig. 3 B). 

3. Result.log 

This log file ( Fig. 3 C) keeps track of statistical data regarding various tncRNA sub-types identified in the sample. 

Conclusion 

Here, we have introduced the tncRNA Toolkit, an open-source program to make tncRNA identification and analysis easier. It was

created in Python3 and Bash. It serves as a starting point for future exploration of tncRNA research. It is simple to run for a user with

basic bioinformatics skills. Any organism can be selected for tncRNA analysis using our software. 

Additionally, accessory choices are offered for a user-customized examination with various parameters. It can provide an accurate 

and speedy tncRNA prediction using the two processes outlined above. This method is helpful for mining tncRNAs and carrying out

extensive analysis, as was done in our recent study [26] . Our pipeline significantly advances the understanding of tncRNA detection

in plants by utilizing methods that can enhance tncRNA identification and provides flexibility using miscellaneous options while 

understanding a complex sRNA molecule of great significance as potential modulators of gene expression. Our goal is to produce a

tool that steadily quickens the large-scale analysis of tncRNAs. 
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