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Abstract: Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do
not code for proteins but take part in regulating gene expression. Since their discovery in the early
1990s, much research has been conducted to elucidate their function in the gene regulatory network
and their involvement in plants’ response to biotic/abiotic stresses. Typically, 20–30 nucleotide-
long small ncRNAs are a potential target for plant molecular breeders because of their agricultural
importance. This review summarizes the current understanding of three major classes of small
ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs).
Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop
productivity and disease resistance are discussed here.
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1. Introduction

Two major kingdoms in taxonomy, kingdom Animalia and kingdom Plantae, divide
this whole universe, and among these two kingdoms, Plantae is non-motile. Hence, evading
stress or constantly dynamic environmental conditions has posed a constant challenge
for plants. Avoidance, tolerance, or resistance to abiotic and biotic stress factors can
substantially minimize yield loss, which could be a turning point to increase food security
for millions. Researchers are seeking solutions and a permanent way out from these harsh
and demanding situations; non-coding RNAs (ncRNAs) have come to the rescue. Their
dramatic development as a rescue agent among the food and cash crops has emerged as
a windfall in the plant science field. These ncRNAs are classified as significant bioactive
molecules and are substantial players in generating diverse genotypes and phenotypes. It
is a well-established fact that 90% of the genome in eukaryotes is transcribed into mRNA,
from which only 2% are translated and finally produce proteins [1,2]. Other than this
essential 2%, the rest is made up of ncRNAs. These RNAs were condemned as useless
because they could not deliver the signature function of RNA, which is characterized by its
protein-coding capacity and also imperfectly conserved sequences [1,3]. Over the years, it
has been established experimentally and by high-throughput sequencing that ncRNAs are
linked to a plethora of gene regulatory functions categorized as epigenetic, transcriptional,
or post-transcriptional fields [4–6].

Soon after their discovery, the ncRNAs were labeled into classes based on their origin,
biogenesis, and mode of action. There are (a) housekeeping RNAs and (b) regulatory RNAs.
The list of regulatory ncRNAs has two members, namely small non-coding RNAs (Table 1),
which include microRNAs (miRNAs); short interfering RNAs (siRNAs); piwi-interacting
RNAs (piRNAs) (in animal only); transacting siRNA (tasiRNA); and long non-coding RNAs
(lncRNAs). This category of RNA follows the usual route of being transcribed from DNA,
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but they do not carry out the translation process and produce proteins [7]. They generally
specialize in performing other crucial activities related to the growth and development of
plants and, most essentially, bring about responses to various abiotic stress factors both
transcriptionally and post-transcriptionally [8].

It has been inferred from modern research that ncRNAs play a vital role in the regu-
lation of gene expression (transcriptional and post-transcriptional) during development
and stress response (abiotic and biotic) in plants [9]. In this review, we delve into a detailed
discussion about the biogenesis and structure of small ncRNAs (miRNA, siRNA, and
tasiRNA) along with an in-depth analysis of their mode of action (how they repress the
target gene expression) and about the wide variety of roles choreographed by them in plant
gene silencing.

Table 1. Classes of small non-coding RNAs involved in gene silencing in plants.

Class Mechanism Length (nt) References

Short interfering RNA (siRNA) Targeted mRNA cleavage 21–24 [10]

MicroRNA (miRNA) Translational silencing,
mRNA cleavage 20–24 [11]

Trans-acting siRNA (tasiRNA) mRNA cleavage 21–22 [12]
Phased secondary small

interfering RNAs (phasiRNAs)
mRNA cleavage, function

in development 20–21 [13]

2. Short Interfering RNAs

RNA interference (RNAi) has inarguably been a revolutionary discovery in the field
of biology in the last several decades. The discovery of small (20–30 nucleotide long) non-
coding RNAs that can regulate genes and the genome completely transformed RNA biology.
These small RNAs can guide effector proteins targeting any complementary nucleotide
sequence through the RNAi pathway, thereby downregulating its expression level. Napoli
and Jorgensen first reported small RNA-mediated gene regulation in plants while working
with chalcone synthase (CHS) in petunia [14]. It was referred to as co-suppression/ post-
transcriptional gene silencing (PTGS). Later in 1992, a similar phenomenon was reported in
a fungus (Neurospora crassa), which is termed quelling [15], and in Caenorhabditis elegans by
Guo and Kemphues (sense/anti-sense mRNA) in 1995 [16]. Then, in 1998, Fire and Mello
explained for the first time that double-stranded RNAs (dsRNAs) were the actual reason
behind such silencing of endogenes while working with Caenorhabditis elegans [17]. Andrew
Fire and Craig Mello were awarded the prestigious Nobel prize in 2006 in the category
of Physiology/Medicine for discovering RNAi: gene silencing by dsRNAs. It has led to
extensive research on how small RNAs can regulate several essential aspects of a plant’s
life, such as transcription, RNA processing, RNA stability, chromosome segregation, etc.

2.1. Biogenesis of Short Interfering RNAs

dsRNA-mediated post-transcriptional gene silencing (PTGS) symbolizes the cellular
defense mechanism protecting it from foreign nucleic acids of invading viruses or trans-
posons [18,19]. Such integration of alien genes produces dsRNAs, which act as a guide for
sequence-specific RNA degradation and are believed to be associated with maintaining
the silencing process for a long time [20,21]. The processing of these long dsRNAs into
21–24 nt long short-interfering RNAs (siRNAs) is facilitated by Dicer, a ribonuclease III
enzyme [22] (Figure 1A). The presence of these siRNAs was first reported by Hamilton
and Baulcombe in plant tissues that showed virus-induced PTGS [23]. These siRNAs
were later found to be present also in Drosophila melanogaster embryo lysate [24], where
the added synthetic 20–22 nt RNA duplexes can efficiently target and cleave mRNAs at
21 nt intervals [25]. That is why these 21 nt long RNAs were called siRNAs or silencing
RNAs. Dicer-mediated processing is coupled with other co-factors, and these siRNAs
are finally loaded onto the RNA-induced silencing complex (RISC), a member of the arg-
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onaute protein family [26]. During incorporation within the RISC, one strand called the
“passenger strand” is dissociated by the activity of AGO2, which is encoded by the gene
AGO2 (argonaute RISC catalytic component 2), whereas the other “guide strand” that
serves as a guide for RNA-directed sequence-specific silencing stays within the complex,
forming the mature RISC [27,28]. Targeted mRNA with sequence complementarity with
the 21 nt long guide-siRNA within the mature RISC is cleaved between the 10th and 11th
nucleotide (from the 5′ end) by the PIWI domain of the AGO2 protein, generating products
containing 5′-monophosphate and 3′-hydroxyl termini [29,30]. These cleaved products are
rapidly degraded by the endogenous exonuclease activity due to the lack of 5′ capping or a
3′poly(A) tail [31]. Apart from the above-mentioned RNAi, plants [20,32], fungi [33], and
C. elegans [21,34] possess a special enzyme called RNA-dependent RNA polymerases
(RdRPs), which can produce additional dsRNAs for amplifying the RNAi response. Such
dsRNAs are synthesized in a primer-independent manner using the targeted mRNA as a
template. It is subsequently processed by Dicer to produce more siRNAs, thereby facilitat-
ing the recycling of the RISC complex [35] (Figure 1B).
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2.2. RNA-Induced Silencing Complex: The Versatile Gene Silencing Complex 
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nificant incidents are common for all types. Firstly, every RISC should comprise one ar-
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RISC to target mRNAs through Watson–Crick base pairing [36]. Each class of small RNAs 
in eukaryotes, such as siRNA/miRNA/piRNA (only in animals), together with the AGO 

Figure 1. Mechanism of short-interfering RNA-mediated gene silencing. (A) Long double-stranded
RNAs/hairpin loop RNAs from alien genes are processed into short interfering RNAs (siRNAs) by
the Dicer/TRBP (the human immunodeficiency virus transactivating response RNA binding domain)
complex and finally become incorporated into RNA-induced silencing complex (RISC). One strand
(passenger strand) is degraded from the RNA duplex, and the other strand (guide strand), along with
argonaute 2, forms the active RISC. The guide strand guides the active RISC to target and cleaves the
complementary mRNAs into the cytosol, resulting in gene silencing. (B) RNAi response in plants
and worms generally becomes amplified by the RNA-dependent RNA polymerase enzymes (RdRPs).
RdRPs and RISC use targeted mRNAs as a template to generate double-stranded RNAs dsRNAs,
which then are processed by the Dicer into secondary siRNAs. These siRNAs eventually amplify the
RNAi effect in the system.

2.2. RNA-Induced Silencing Complex: The Versatile Gene Silencing Complex

Although there are diverse ways to regulate gene expressions using RISC, two signifi-
cant incidents are common for all types. Firstly, every RISC should comprise one argonaute
protein family member, and secondly, at its core, a small RNA should guide the RISC
to target mRNAs through Watson–Crick base pairing [36]. Each class of small RNAs in
eukaryotes, such as siRNA/miRNA/piRNA (only in animals), together with the AGO
protein family, forms the ribonucleoprotein RISC. Our current understanding of RISC (from
birth to death) has been summarized here.
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The Argonaute family of proteins is at the heart of RISC-mediated gene regula-
tion [37,38]. There are four functional domains in AGO proteins: PIWI-AGO-Zwille (PAZ),
Middle (MID), N-terminal (N), and PIWI (Figure 2) [37,39]. There are two linkers (L1, L2),
out of which L1 connects the N and PAZ domains, whereas L2 supports the N-L1-PAZ
structure connecting it to the MID-PIWI lobe [40,41]. The PAZ domain of AGO proteins
contains a pocket that interacts with and binds the guide strand from the 3′ end [42]. A
conserved sequence of a catalytic tetrad (Asp-Glu-Asp-His/Asp) can be found in the PIWI
domain of some AGO proteins that are responsible for the target mRNA degradation. This
catalytic domain is also responsible for the cleavage of some passenger strands before it
gets ejected [39]. In the initial phase of RISC assembly, a small RNA duplex is loaded
onto an empty AGO protein with the help of Hsp70/Hsp90 chaperons and forms the
pre-RISC [43]. One of the strands, which is less stable and likely to be adenine/uridine (AU)
rich, is preferably able to be the guide strand. This type of strand selection is asymmetric
and generally depends on the difference in the thermodynamic stability of two ends of
the RNA duplex [44,45]. At the initial stage of passenger strand separation, the N domain
disrupts the 3′ end base-pairing of the guide strand to help open the RNA duplex [46].
Then, the passenger strand is sliced at a position opposite the guide strand’s 10th and
11th nucleotide (g10 and g11) by the catalytic activity of the AGO protein [27,28,47]. After
passenger strand separation, the mature RISC binds to the targeted mRNA guided by the
guide strand and either slices it directly or induces translational repression by recruiting
necessary proteins [48,49]. Although AGO and small RNAs are short-lived, once the RISC
is formed, those two tend to be long-lived [50,51]. Generally blank/unloaded AGO proteins
are degraded by the autophagy pathway [52,53], whereas the target RNA-directed miRNA
degradation (TDMD) targeted RISC are degraded by the ubiquitin–protease system [54,55].
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Figure 2. Mechanism of RNA-induced silencing complex (RISC) assembly. Argonaute has
four functional domains: PIWI-AGO-Zwille (PAZ), Middle (MID), N-terminal (N), and PIWI
(Piwi/Argonaute/Zwille). An empty argonaute loads an RNA duplex with the help of HSP70/HSP90
and forms the pre-RISC. The passenger strand (black strand) is ejected from the pre-RISC, and the
guide strand (red strand) and argonaute form the mature/active RISC that start targeting the compli-
mentary mRNAs to assert gene silencing.

2.3. Short Interfering RNA Mediated Silencing in Plants

The siRNA-mediated gene silencing mechanism has been exploited extensively over
the years for crop protection against biotic stresses and as a platform for overall crop
improvement. RNAi-mediated silencing requires the design of a hairpin loop structure
containing both the sense and anti-sense strand of the targeted gene separated by an intron
sequence. Such a construct will create hpRNAs in plants that are cleaved by Dicer and form
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siRNAs, which trigger the RNAi pathway to silence the targeted gene [56]. Pests such as
insects, nematodes, viruses, and bacteria pose a severe threat to agricultural produce. RNAi
has been used to make pest-resistant crops by targeting essential genes in the pests and
silencing them by host plant-mediated RNAi (host-induced gene silencing—HIGS) [57].

The two-spotted spider mite is one of the deadliest plant pests; it can attack more
than three thousand crops and feeds mainly on Chinese cabbage. RNAi-mediated target-
ing against the COPB2 gene of this pest resulted in an almost 100% mortality rate [58].
Similarly, transgenic potato plants expressing the molting-associated EcR gene showed
enhanced resistance against the deadly Colorado potato beetle [59]. The root-knot nema-
tode Meloidogyne incognita causes colossal damage to agricultural products worldwide.
RNAi-mediated simultaneous silencing of Mi-flp1, Mi-flp12, and Mi-flp18 genes resulted in
enhanced resistance against this nematode [60]. An extensive list of such siRNA-mediated
gene silencing to improve desirable traits in plants is listed in Table 2. Because RNAi-
derived plants have been categorized as genetically modified crops (GM crops) and have
been the subject of bitter controversy, the exogenous application of RNAi-inducing dsRNA-
based bio-pesticides is gaining popularity, as it provides a non-transgenic approach [61].
Tenllado et al. first reported the effective foliar application of dsRNAs targeting the Alfalfa
mosaic virus (AMV), Tobacco etch virus (TEV), and Pepper mild mottle virus (PMMoV) in
2001 [62]. However, the authors did mention that the commercial success of such topical
application of dsRNAs will depend on two critical parameters: cost-effectiveness and an
optimized mode of delivery. In recent years, several studies have been conducted to deliver
such topical solutions of dsRNAs with impeccable efficiency and target specificity [62–64].
Topically applied dsRNA-based biopesticides have high species specificity, low levels of
toxicity, and a minimal environmental effect compared to traditional pesticides. If their
distribution and usage can be regulated in a precautionary way, dsRNA-based biopesticides
can revolutionize the integrated pest-management system [65].

2.4. Tweaking the siRNAs to Improve Desirable Traits in Plants

siRNAs are well known for their silencing role in the case of viral RNAs. They
play a master role in regulating plant defense machinery against potential pathogens
such as bacteria, viruses, fungi, oomycetes, and other parasitic plants. Recent research
has provided evidence of the ability of siRNAs to suppress fungus and oomycetes by
silencing specific pathogen genes related to pathogenesis. Thus, scientists have precisely
concluded that siRNAs are a potential concoction of diverse gene sequences and are used
as a “shotgun” which targets random genes of the pathogen with great efficiency [66]. After
discovering the antiviral factor, virus-derived siRNAs (vsiRNAs) in tobacco infected with
potato virus, there has been a breakthrough in plant immunity. These viral dsRNAs are
directly targeted by plant DCLs, resulting in 21–24 nt long primary vsiRNAs. It has been
established that these 21 nt long vsiRNAs specifically silence the detrimental viral RNAs
through Post Transcriptional Gene Silencing (PTGS) [67]. The functions of vsiRNAs can
also be categorized into two parts. One part is when the vsiRNAs degrade the intruder
viral genome and render antiviral tolerance to plants. On the other side, some vsiRNAs
silence host gene expression and manipulate host resistance towards viral attack. During
tomato yellow leaf curl virus (TYLCV) infection, it has been observed that vsiRNAs are
utilized by TYLCV to silence SILNR1, a long noncoding RNA (lncRNA) associated with
antiviral defense. vsiRNAs obtained from wheat yellow mosaic virus (WYMV) down-
regulate host genes and activated broad-spectrum host immunity [68]. Another category of
siRNA, which was first seen in Arabidopsis, which also participates in antiviral defense,
is virus-activated siRNA (vasiRNA) [69]. In the case of antiviral defense, the vsiRNAs
are generated from the viral genome, which safeguards the plants by destroying the viral
RNA. However, in the case of non-viral plant pathogens, endogenous siRNA-orchestrated
gene silencing is instantly triggered to alter the gene expression associated with plant
immunity [66]. The components of the siRNA pathway interact among themselves and
others to orchestrate plant immunity. RDR6 is essential for plant immunity because it
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aids in producing secondary siRNAs and silencing signals. For example, in rice, shl2-rol,
which is a mutant line of the rice gene OsRDR6 results in severe infection symptoms when
the plant is attacked by Xanthomonas oryzae PV. oryzae, thus proving the importance of
RDR6-dependent siRNAs in rendering tolerance against bacteria [70].

Artificial siRNAs are produced in plants via Host-Induced Gene Silencing (HIGS) to
silence the deadly pathogen genes causing infection. A well-tested example is transgenic
barley and wheat, which express artificial siRNAs that target gene Avra10 and display in-
creased resistance to Blumeria graminis, the causative agent of powdery mildew disease [71].
HIGS via engineered dsRNA resists parasitic plants. This strategy has been demonstrated in
transgenic tobacco that expresses dsRNA against transcription factors controlling haustoria
development and reduced vigor in Cuscuta patagonia. Similarly, Orobanche aegyptiaca has
been recorded to grow and feed on tomatoes. The above examples highlight host-produced
synthetic siRNAs’ significant role in controlling parasitic plants. An extensive list of such
siRNA-mediated gene silencing to improve desirable traits in plants is listed in Table 2.

Table 2. Genetic alteration of siRNAs in plants to improve the desirable traits.

Plant Targeted Gene Traits Involved References

Wheat SBE IIa and SBE IIb Increased amylose content [72]
Rice OsDWARF4 Improved biomass [73]

Cotton ∆ 9-desaturase and
oleoyl- phosphatidylcholine γ6-desaturase Improved stearic- and oleic- fatty acid content [74]

Onion Lachrymatory factor synthase (LFS) Tearless onion [75]
Rice OsGA20ox2 Improved grain yield [76]

Cotton Delta-cadinene synthase Reduced toxic terpenoid gossypol [77]

Rice OsSSI2 Resistance against Magnaporthe grisea and
Xanthomonas oryzae [78]

Rice GluB Decreased glutelin content [79]
Rice OsFAD7 and OsFAD8 Resistance against Magnaporthe grisea [80]

Tomato SlNCED1 Increased concentration of β-Carotene
and lycopene [81]

Potato SYR1 Resistance against Phytophthora infestans [82]

Tomato DET1 Increased concentration of Carotenoid
and flavonoid [83]

Wheat MLO Resistance against Blumeria graminis f. sp. tritici [84]
Tomato α-Man/β-Hex Increased fruit shelf-life [85]

Arabidopsis 16D10 Resistance against Meloidogyne incognita [86]
Tomato ACC synthase (ACS) Decreased content of ethylene [87]
Tobacco Splicing factor and integrase Resistance against Meloidogyne incognita [88]
Tomato Chalcone synthase Production of Seedless fruit [89]

Rice PNS12 Resistance against Rice Dwarf Virus (RDV) [90]
Arabidopsis HC-Pro Turnip Mosaic Virus (TuMV) [91]

Canola Farnesyl transferase Increased drought tolerance [92]
Rice OsDIS1 Increased drought tolerance [93]

Sugarcane CP Enhanced resistance against sugarcane
mosaic virus [94]

Potato eIF4E Enhanced resistance against potato virus Y [95]

Soybean AC2 Improved resistance against mungbean yellow
mosaic India virus [96]

Soybean CP Improved resistance against mungbean yellow
mosaic India virus [97]

Soybean P3 cistron Enhanced resistance to soybean mosaic virus [98]

Rice S7-2 Improved resistance against rice black streak
dwarf virus [99]

Cotton IR Improved resistance against cotton leaf curl
Rajasthan virus [100]
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3. microRNA: Structure and Biogenesis

MicroRNAs are extremely well-known members of molecular biology as a group of
tiny 20–24 nt (as opposed to siRNA, Table 3) endogenous and non-coding RNAs that mas-
termind the regulation of gene expression [101]. Researchers worldwide have investigated
plants and proved a labyrinthine molecular pathway regarding miRNA biogenesis and
their various modes of action. The hub of miRNA biogenesis and activity are clandestine
subcellular locations that have been established after decades of research [102].

A multitude of MIRNA genes (MIR genes) are encoded by the plant genome, and it
has been observed that a vast majority of them survive as clusters [103,104]. There is a
plethora of complexities and regulations throughout the miRNA biogenesis pathway [102]
(Figure 3). miRNAs have been classified based on their position inside the genome and
are “intronic” or “intergenic.” The intronic miRNAs are prepared from the introns present
in the host transcript [104]. On the other hand, the intergenic miRNAs connect two
protein-coding genes, and their transcription occurs in separate independent units by RNA
polymerase II (Pol II). Because they are certified Pol II products, the primary transcripts
of the MIR genes, also called the pri-miRNAs, have a typical 5′ capping and a 3′ Poly A
tail with splicing [105]. Subsequent folding of the pri-miRNAs takes place, which results
in a hairpin-like structure comprising an upper stem, a terminal loop, the miRNA zone,
a lower stem portion, and a number of arms that are perceived, handled, and fixed by
Dicer-like RNase III endonucleases (DCLs). The number of DCL proteins varies across the
immense range of plants. For example, in Arabidopsis thaliana, the number of DCL proteins
is four. DCL1 is the leader protein, and they expedite the generation of the majority of
miRNAs with the aid of accessory proteins such as double-stranded RNA-binding protein
Hyponastic Leaves 1 (HYL1) along with Serrate (SE), which is a zinc finger protein [106].
Many other DCLs are also engaged in the production of miRNA; for example, miR822
and miR839 are produced by AtDCL4, and OsDCL3a is responsible for producing 24-nt
long miRNAs that administer DNA methylation, e.g., hc-siRNAs [107]. In the process of
miRNA biogenesis, there are multiple other factors that participate in the process, such as
THO2, SE, and RCF3. They create structures called splicing speckles and stay adjacent to
dicing bodies [108,109]. Other factors such as MOS2, PINP1, and NOT2 display scattered
nucleoplasmic design, and they too remain partially abutting the dicing bodies [110–112].
The detailed analysis of the subcellular localization of all the above-discussed factors is
highly suggestive that they actively participate in miRNA biogenesis [102]. A remarkably
noteworthy feature that has unfolded from the work of [102] is that the pri-miRNAs are
processed, folded, and finally modified co-transcriptionally. This concept was hypothesized
earlier, but the above studies act as solid evidence for this fact. Firstly, DCL1 is closely
connected with the MIR genes via their chromatin region [113]. Secondly, the plethora of
regulatory proteins (NOT2, CDC5, and ELP2) play a vital role in miRNA transcription
and link up with the miRNA machinery functioning proteins [114]. mRNA adenosine
methylase (MTA) layers and coats m6A on the surface of pri-miRNAs and might also have
a profound impact on miRNA biogenesis. In plants, the structure of the pri-miRNAs is
comparatively variable in terms of length, which starts from 60nt and might stretch over
to 500 nt. In terms of structure, they display more complexity compared to their animal
counterparts (∼70 nt long) [114], and they can be fixed in two ways: the loop-proximal site
to the loop-distal site and conversely as well [115–121].

The DCL-umpired fixation of the nascent miRNA/miRNA* duplex has 2-nt 3′ over-
hangs on both strands with a phosphate group at the 5′ end and two hydroxyl groups
at the 3′ end. These two hydroxyl groups are of extreme necessity, and the 2′-OH site
undergoes methylation orchestrated by small RNA methyltransferase HUA Enhancer
(HEN1) [122,123]. For years, the prejudice existed that methylated miRNA/miRNA* du-
plexes were transported out by the animal Exportin 5 (EXPO5) homologue hasty (HST)
protein [124]. The assembly of RISC was an enigma to scientists for decades. Later, in 2018,
Bologna et al. established the fact that RISC is predominantly assembled in the nucleus
and then exported out to the cytoplasm by the EXPO1 protein. Some more research also
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throws light on the fact that some miRNAs might be exported out of the nucleus in their
original duplex form and fabricated in the cytosol altogether. The guide strand, miRNA
of the miRNA/miRNA*complex, is fabricated inside the argonaute (AGO) protein, and
the passenger strand (miRNA*) is degraded. In Arabidopsis thaliana, 10 AGO proteins are
present, and AGO1 is the key performer for miRNAs and is designated the chief effector
protein [125].
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Figure 3. RNA Polymerase II (Pol II) transcribes MIR(micro-RNA) genes and forms stem–loop
structure by folding to form pri-miRNAs. These are processed by DCL1 either in a “base-to-
loop” or “loop-to-base” track. Small RNA methyltransferase HEN1 methylates the newly formed
miRNA/miRNA*duplexes. RISC takes place either in the nucleus or cytoplasm. The basic mode of
action of miRNAs (gene silencing) takes place via target cleavage or translation inhibition.

Table 3. Major differences between siRNAs and miRNAs in plants.

Properties siRNA miRNA References

Discovery 1999 1993 [29,126]

Definition Cell’s defense mechanism against
foreign nucleic acids Regulator of endogenous genes [127]

Length 21–24 nt 20–22 nt [128]
Precursor Long dsRNAs Hairpin-shaped ssRNAs [129]

Gene regulation mechanism Transcriptional and
post-transcriptional Post-transcriptional only [128]

Mode of action Histone modification, DNA
methylation, and mRNA degradation

Translational repression and
mRNA degradation [128]

Argonaute requirement AGO1, AGO4, AGO6, AGO7 AGO1, AGO10 [130,131]
Nature of complementation

with target Fully complementary Fully/partially complementary [127]

Functions Defense against viruses, transposons Biotic/abiotic stress response, cell
development, and differentiation [128,132,133]

miRNAs mediate gene silencing by guiding the RISC complex to attack the target
genes through complementary base pairing, but the primary route they follow is that
of either target cleavage or/and inhibition of translation. With extensive research by
researchers globally, it has been established that some miRNAs (miR390, miR173, and



Int. J. Mol. Sci. 2023, 24, 3143 9 of 26

miR845) have the potential to commence the mass manufacture of secondary siRNAs called
the phasiRNAs which also are known as easiRNAs [134–136]. In plants, an extremely
inflexible base-pairing rule is engaged. It has been observed that an almost impeccable
base-pairing happens in the 5′ region, with a maximum mismatch number being one, and a
less stringent pairing happens in the 3′ end, with a maximum of four mismatches and very
small bulges [137,138]. In plants, the target gene enormity is, to a large extent, lesser than
what is found in animals. Apparently, translation inhibition seems to be the most widely
accepted route, but practically, target cleavage holds immense importance because of its
mandatory participation in the post-germination development of the plant [139].

3.1. Mode of Action of microRNA

The elemental phenomenon which dictates miRNA activity is its export from the
nucleus to the cytoplasm [105]. In the model plant, Arabidopsis thaliana duplexes of
miRNA/miRNA* are inferred to be cut off from the pri-miRNAs inside the nucleus itself
because the activity of DCL1 is nucleus-specific, and the shifting from the nucleus to the
cytoplasm is carried out by HASTY [124]. There is also another functional complex called
the THO/TREX complex, which plays some role in miRNA biogenesis [108]. The above-
mentioned complex is the mediator of the transcription-coupled export of mRNA through
the nuclear pore complex, so scientists have inferred that the THO/TREX complex also
participates in the miRNA transport [140].

The primary function of miRNA is to regulate post-transcriptional gene modification
of the target genes through two major operational pieces of machinery: (1) transcript
cleavage, and (2) translation repression [103,141,142]. The conventional, general rule that
dictates the mode of action of the small RNAs is the level of sequence complementar-
ity between them and their corresponding targets because the small RNAs, which are
associated with transcript cleavage, require maximum sequence complementarity [143].
There was a tremendous misconception regarding the mode of action of the plant miR-
NAs, which happened due to the impeccable sequence complementarity between the
plant miRNAs and their corresponding mRNAs [141,142]. It is true that a good amount
of sequence complementarity is favorable for RNA cleavage, but it is not that stubborn
toward translational repression. It has been confirmed experimentally by many research
groups that a high degree of sequence complementarity is present between the miRNAs
and their targets to finally bring about miRNA-mediated inhibition of translation [144–146].
Citable examples of target genes and their corresponding miRNAs (which downregulate
the degree of protein translation) are APETALA2 (AP2)/miR172, SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 3 (SPL3)/miR156, COPPER/ZINC SUPEROXIDE DISMUTASE 2
(Cu/ZnSOD)/miR398, and SCARECROW-LIKE PROTEIN 4 (SCL4)/miR171 [144,147–149].

The above discussion validates the point that sequence complementarity is not a
mandatory criterion for the mode of action of miRNAs in plants. Recent research has also
established that the miRNA targets (mRNAs) are stuck on the ribosomes in the endoplasmic
reticulum (ER) [150–152], which implies that translational inhibition might be a major
instrument that is operational on a larger percentage of miRNA targets than what is
expected. Because plant miRNAs show a significant level of sequence complementarity
with their corresponding target mRNAs, the use of bioinformatics tools has proved to
be extremely useful in predicting and subsequently validating the miRNA targets in
plants [153]. As stated above, with regard to the three types of operational machinery used
by miRNA to perform its function, here we discuss both of them chronologically.

3.1.1. Transcript Cleavage

The phenomenon of miRNA-directed RNA cleavage is popularly named slicing. This
phenomenon occurs at a predetermined location in the targeted mRNA [154]. RNAs were
identified throughout the genome with a 5′ monophosphate. It was observed that quite
a large number of miRNA targets face transcript cleavage [155]. Transcript cleavage is
achieved by the PIWI domain of the AGO proteins, which orients itself similar to the
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folding pattern of RNase-H and possesses endonuclease activity. The AGO1 protein,
which acts as the primary effector in Arabidopsis thaliana, undergoes cleavage in the above-
stated manner, and this activity also occurs with a plethora of other effectors such as
AGO2, AGO4, AGO7, and AGO10 [156–161]. In Arabidopsis, the 5′-to-3′ exonuclease is
designated as EXORIBONUCLEASE 4 (XRN4), and it degrades the 3′ fragments [162].
The same happens with the 5′ cleavage fragments, which are almost undetectable in the
wild-type species because of their speedy degradation. Chlamydomonas reinhardtii shows an
interesting phenomenon in which the nucleotidyl transferase MUT68 first polyadenylates
the 5′ fragments, and then degradation takes place via the cytoplasmic exosome [163].
The Arabidopsis homolog of MUT68, called HEN SUPPRESSOR 1 (HESO1), along with its
paralogue UTP: RNA URIDYLYLTRANSFERASE 1(URT1) carry out polyuridylation of
the 5′ fragments both in vitro and in vivo [164,165], and RISC-INTERACTING CLEARING
3′-5′ EXORIBONUCLEASE 1(RICE1) degrades the uridylated 5′ pieces. If these fragments
are left undegraded, then they might stock-pile in plants and result in the formation of
a catalytically inactive variety of RICE1 [166]. The potential role played by cytoplasmic
exosomes is also significant because the subunits {SUPERKILLER 2, (SKI2), SKI3, SKI8,} of
the cofactor are essential for the breakdown of the RISC-bread 5′ shreds [167].

3.1.2. Translation Inhibition

The phenomenon of translation inhibition is not as common in plants as is transcript
cleavage because miRNA-guided cleavage is active all over; in addition, there are bottle-
necks in estimating the protein levels because of the lack of worthwhile antibodies. Some
examples can be cited that show miRNA-induced translation inhibition, and those are in
plants in which AP2 is regulated by miR172, and SPL3 is regulated by miR156/7 [147–149].
The necessary components required to carry out miRNA-mediated translation inhibition
involve the microtubule-serving enzyme KATANIN1 (KTN1) [144]; the processing body (P
body) component VARICOSE (VCS) [144]; SUO protein, which is a GW repeat [145]; and
the ALTERED MERISTEM PROGRAM1 (AMP1), which is the ER membrane protein [146].
It had been established that mutation in any of these above-stated genes could significantly
hinder the process of miRNA-guided translation repression, and these events vividly indi-
cate that transcript cleavage and translation inhibition are two independent lines of action
with no link with each other. Genome-wide RNA profiling with 5′ monophosphates in
Arabidopsis thaliana is performed to obtain an idea of the RNA degradation phenomenon,
which clearly indicates that co-translational mRNA breakdown takes place for the majority
of genes, which involves a plethora of miRNA targets [150,152]. A notable inference has
been drawn from the entire study, i.e., even if the mode of action of the miRNAs is “RNA
cleavage,” then also the potential targets are the translating miRNAs. Although the entire
molecular mechanism of translation inhibition is yet unclear, in vitro studies hint that plant
miRNA has the capacity to hinder the activity and operations of the ribosomes [168]. How-
ever, an immeasurable amount of information and knowledge has been gained about all
the lead role players participating in miRNA biogenesis, mode of action etc. Nonetheless,
uncertainty still persists about the subcellular locations where these activities are carried
out. Activities such as the process of formation of D-bodies containing the dicing com-
plexes are yet unknown. Questions such as the method of association of AGO1 with the
Endoplasmic Reticulum (ER) and membrane-bound polysomes or how membrane-bound
polysome affects miRNA-guided phasiRNA biogenesis are still in a haze.

Since AGO1 has a dual behavior of associating not only with miRNAs but also with
siRNAs from endogenous sequences such as transposons, phasiRNA loci, and exogenous
sequences such as viruses, transgenes, etc. The subcellular division and distribution of
AGO1 in the middle of the cytosol, endomembrane compartments, the nucleus, and the
cytoplasm have a significant impact on the scheme of action of various small RNAs. The
lack of a complete and clear understanding and updated knowledge about the subcellular
locations of miRNA biogenesis, and activity, deprive us of a vivid picture of miRNAs and
their crosstalk with siRNAs [169].
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3.2. microRNA Mediated Silencing in Plants

RNAi technology, especially the small non-coding RNAs involving miRNA, has been
proven to possess immense potential to act as an attractive tool for researchers worldwide
in the design and generation of plants with refined and upgraded traits by tailoring
both advantageous and disadvantageous genes. The functions of individual genes can
be comprehended with this powerful tool and have proven to be of immense utility to
molecular crop breeders to generate improved varieties. Non-coding small RNAs have
been widely used in silencing genes of interest by the RNAi technique. Adopting the
method of overexpression of miRNA is especially prevalent, along with the process of
introducing artificially synthesized miRNA targeting the gene of interest.

Small non-coding RNAs have been of immense use in the field of agricultural biotech-
nology, and their mass utilization has led to food safety because the crop cultivars thus
generated have improved agronomic traits such as higher yield and nutritional value.
Interactions of miRNAs with their targets is an interesting domain of research, and it has
thrown light on the procedures of post-transcriptional gene regulation and a labyrinth of
signaling cascades that have complete control of the plant stress responses. Though there
are immense benefits of small non-coding RNAs in improving agriculture, there are certain
drawbacks as well. Modification of the expression of a certain gene or its corresponding
miRNA might rebound, and certain pleiotropic changes might crop up in the plant’s mor-
phology and its development. Therefore, a complete understanding of the mechanism of
miRNAs is mandatory before designing transgenic strategies.

miRNA strategies are somewhat confusing when implemented into application. The
strategy which has proved fruitful for a certain plant species might not achieve success for
another species, and this phenomenon is attributed to the various types of regulation of
the evolutionarily conserved miRNA across different species [170]. Synthetically prepared
miRNAs are of immense use in the market because they can overcome the potential
drawbacks and limitations posed by siRNAs given that they bring about gene silencing with
the utmost precision and finesse. The chances of off-target effects are significantly lesser
with miRNA-based-RNAi compared to siRNAs because they require lesser nucleotides
(single 21/22 nt sequence) to identify the target sequence. This trait of miRNAs makes
miRNA-based RNAi an extremely popular one because it becomes a cakewalk to target
one specific gene in a family of closely related genes. Genetically engineered crops which
contain constructs that encode for a heterologous protein or overexpress a certain protein
are constitutionally dissimilar from the transgenics which are prepared by RNAi technology
because the gene suppression cassettes express non-coding RNAs only. Hence, it can be
inferred that the transgenic crops with traits introduced by RNA-based methods are secure
for human and animal consumption and do not demand intense research on the digestibility
issues of the newly launched RNA component inside the cell. A point of concern regarding
the biosafety of the RNAi transgenics is that gene silencing by chromatin alteration and
recast might have adverse effects, which could be passed on through progenies. Although
these hindrances and limitations regarding the mindset of scientists are relatively small in
number, it has been proven successfully that strategies executed based on small non-coding
RNAs have immense and immeasurable potential to bring about a tremendous surge in
crop productivity and a significant soar in their nutritional value.

3.3. Tweaking the miRNAs to Improve Desirable Traits in Plants

The miRNAs play a vital role in plant growth and development during stress resistance,
whether biotic or abiotic (Table 4). These categories of RNAs are established regulators of
various complex networks. Several research and review articles have vouched for the role of
miRNAs in plant growth and development [171–173]. In unraveling the complex regulatory
mechanisms that control numerous developmental stages in a plant, a plethora of miRNAs
and their complex genetic networks came into the spotlight [172]. Different research groups
have identified miRNA target modules, such as miR156-SQUMOSA PROMOTER BINDING
PROTEIN-LIKE (SPL), miR172-APETALA2 (AP2), and miR159-MYELOBLASTOSIS (MYB),
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which regulate the various key transition phases during plant development [172,174]. To
cite an example, in the model plant Arabidopsis, the miR156-SPL module is a potential neg-
ative regulator during the germination–vegetative growth–reproductive phase transition.
A drop in the level of miR156 prompts SPL expression, which subsequently accelerates
changes, whereas miR172-AP2 works precisely the opposite way [175]. miRNAs multitask,
as they act as coordinators and connect the regulatory networks with various phytohor-
mones such as gibberellic acid (GA) and abscisic acid (ABA), thus exercising a tight grip
over germination and dormancy in plants [176–178]. Extensive global research has clearly
established that miRNA acts as an efficient mediator in numerous signaling pathways
governing plant development. Apart from these, miRNAs are adept at performing via an
integrative mode controlling a solo function [173]. It has also been established that the
various existing isoforms of a single miRNA family can play an active part in regulating
different physiological functions via the same or various other genes [179].

The literature demonstrates that miRNAs regulate gene expression in dealing with
various stress responses, both biotic and abiotic. Their versatile role has been demonstrated
in the model plant Arabidopsis and other cereal crops such as rice, wheat, maize, and
barley [175]. In many plants, it has been clearly witnessed that a wide range of miRNA
expression exists to fight out various stress factors. However, the anomaly observed is that
only a handful of miRNA-target modules can regulate the expression pattern of the target
genes responsible for the specific stress response. It has also been observed that this pattern
is conserved throughout various species of plants [180]. The role of these conserved miRNA-
target modules is also to confer stress resistance to plants by participating in different
metabolic pathways. Research has proved that numerous well-established miRNA-target
modules, a citable example being mi-R398-COPPER/ZINC SUPEROXIDE DISMUTASE
(CSD), can mitigate the detrimental effects of various stress factors. miRNAs interact with
transcription factors (TFs) to regulate the signaling of stress-related hormones such as Auxin,
Ethylene, ABA, and GA during drought conditions [181]. In a similar case, it is seen that
the miR169-NFY module regulates plant stress response during water stress. Expression
of NF-Y is increased in stomatal guard cells to control their aperture, which consequently
facilitates drought tolerance [182]. In Arabidopsis, the enhanced heat tolerance is attributed
to the increased expression of miR398, which downregulates the specific targets (CSD1,
CSD2, and COP-PER CHAPERONE OF CSD (CCD) [183]. The highly conserved miR394-
LCR module is an active participant in cold-stress response in plants, and overexpressed
miR394a Arabidopsis plants exhibit cold tolerance because they downregulate the LCR
gene [184]. In bentgrass (Agrostis stolonifera), tolerance towards saline stress is conferred by
the overexpression of the osa-miR319a module [185].

The miRNA-targeted modules regulate tolerance towards biotic stress factors such as an
attack of bacteria, fungi, virus, and various pests [180]. In Arabidopsis, miR393-TRANSPORT
INHIBITOR RESPONSE1 (TIR1), AUXIN SIGNALING F-BOX1 (AFB2), and AFB3 are the mod-
ules responsible for the defense response against Pseudomonas syringae PV. tomato DC3000.
The authors of one study [186] also worked on the miR773-METHYLTRANSFERASE2 (MET2)
module, for which enhanced resistance was observed as a part of pathogen-associated
triggered immunity in the case of fungus. In the case of viral defense, a typical example
is rice, in which the miR528-ASCORBATE OXIDASE (AO) module facilitates the aggrega-
tion of reactive oxygen species (ROS). When the rice stripe virus (RSV) strikes, miR528
covered by AGO 18 comes into action, leading to the rise in ROS levels which render
antiviral defense.
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Table 4. Genetic alteration of miRNAs in plants to improve the desirable traits.

Plant miRNA Targeted Towards Traits Involved References

Tomato miR482e-3p NBS-LRR class proteins Improved fungal resistance [187]
Tomato miR482/2118 Leucine-rich repeat protein Improved bacterial resistance [188]

Arabidopsis miR827 Nitrogen limitation adaptation Improved nematode resistance [189]

Cotton miR166b Mitochondrial ATP synthase of
Bemisia tabaci Improved insect resistance [190]

Arabidopsis miR773 Methyltransferase 2 Improved fungal resistance [186]

Arabidopsis miR408 uclacyanin Improved biomass
grain yield [191]

Rice miR396 GRF6 Yield increase [192]
Arabidopsis miR319 TCP transcription factors Delayed flowering [193]

Camelina sativa miR159 Fatty acyl-ACP thioesterases Improved seed quality [194]
Salvia miltiorrhiza miR160 ARF10, 16, 17 Improved biomass [195]

Tomato miR858 SlMYB7-like Increased anthocyanin [196]

Arabidopsis miR398 CSD1 and CSD2 Improved resistance against salt
and heavy metal [197]

Wheat miR408 Phosphate transporter Improved biomass and
Pi acquisition [198]

Rice, tobacco miR444 OsMADS23,27a,27b,57 and
Tobacco genes (NRTs/AEEs) Improved N and Pi acquisition [199,200]

Rice miR528 L-ascorbate oxidase Improved resistance
against RBSDV [201]

Rice miR444 MIKCC-type
MADS-box proteins

Improved resistance against RSV [202]

Arabidopsis miR156 SPL9 Improved resistance
against insect [203]

Rice miR396 GRF8 Improved resistance against
insect and fungi [204,205]

Arabidopsis miR159
sex lethal (Sxl) protein,

acetylcholinesterase (AChE)
and orcokinin (Orc)

Improved resistance
against insect [206]

Tomato, alfalfa miR156 SPL Improved tolerance
against drought [207,208]

Arabidopsis miR402 DEMETER-LIKE Protein 3 Improved tolerance
against salinity [209]

Cotton miR160 ARF10, ARF16, ARF17 Improved tolerance against Heat [210]
Sunflower miR396 HaWRKY6 Improved tolerance against heat [211]

Rice miR166 HD-Zip family proteins Improved tolerance against Cd [212]

Arabidopsis miR402 DEMETER-LIKE Protein 3
Improved tolerance against

salinity and increased
seed germination

[209]

Tomato miR169 SlNF-YA1/2/3, SlMRP1 Improved resistance
against drought [170]

Wheat miR408 NAC domain protein and
protein phosphatase Increased uptake of Potassium [213]

4. Trans-Acting siRNA

Gene silencing in eukaryotes was observed many years ago and has been a fas-
cinating topic for researchers, but the mechanism behind this phenomenon was quite
unclear then. Hence, this process of silencing (s-RNA) was called and identified by various
names, viz., RNA interference, co-suppression, quelling, etc. are among the plethora of
short sRNAs identified, mainly miRNA and siRNA rampant in plants. siRNA has been
categorized into various types and among them, one is trans-acting siRNA (tasiRNA),
which is being studied in great detail. tasiRNAs originate from non-coding RNA (ncRNA)
precursors, and the most discerning feature of tasiRNA biogenesis lies in the need for
a miRNA-dependent pathway for the production of a single-stranded RNA (ssRNA)
precursor [214,215]. Arabidopsis thaliana, the universal model plant, first gave substantial
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evidence of the miRNA-activated secondary siRNA generating loci. In this case, the non-
coding RNA molecules rampantly produced siRNAs that repressed the gene expression
of all those genes which were unassociated with their precursor molecules; hence, the
nomenclature of trans-acting siRNAs developed (tasiRNAs). Arabidopsis thaliana has four
families of tasiRNA-generating loci (TAS1-4). miR173 targets TAS1 and TAS2, whereas
the biogenesis of TAS3 and TAS4 happens in the presence of miR390 and miR828, respec-
tively [216–218]. Extra TAS genes such as TAS5-10 have been speculated to exist in other
plants as well; hence, global research focusing on secondary siRNAs is being performed by
various research groups [219–222].

4.1. Biogenesis and Structure

tasiRNAs are 21-nt structures that are generated from non-protein-coding primary
TAS transcripts. These primary TAS transcripts are capped and polyadenylated as per the
general rule, and it has been observed that the generation of tasiRNAs is set off by the
breakup of these primary TAS transcripts (pri-TASs) by the specific mRNAs, and these
transcripts possess a binding site predominantly for 22-nt miRNA. tasiRNAs are proactive
in the methylation process of the TAS DNA, but they do not play any role in the generation
of the TAS transcripts [223]. The cleaved product formed by the miRNAs is brought into
a steady state by the suppressor of gene silencing 3 (SGS3) [12] and is transformed into a
dsRNA by RDR6. This transitional state is then acted upon by DCL4 and dsRNA binding
protein 4 (DRB4) to form 21 nt siRNAs. These intermediatory siRNAs are integrated into the
AGO-RISC complex, the aim of which is to target complementary sequences [12,215,216].
Research and observation have led to the inference that AGO1 and AGO7 proteins are
linked with the activities of tasiRNAs. Irrespective of the type of small non-coding RNA,
3′-end methylation of all is carried out by HUA ENHANCER 1 (HEN1) (Figure 4).
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In the universal model plant Arabidopsis thaliana, there are eight tasiRNA-generating
loci, and all of them have been classified into four TAS groups (TAS1-TAS4). Two 22 nt
complexes, namely miR173::AGO1 RISC and miRNA::AGO1 RISC, start the generation of
tasiRNA from TAS1a, b, c, TAS2 RNAs, and TAS4, respectively [157,224,225]. A dazzling
exception exists in this entire scenario of tasiRNA generation, which concerns TAS3 because
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it is from that group that the generation of tasiRNA commences by miR390:AGO7 RISCs,
each of which are 21 nt long.

Here too lies a hindrance similar to that of all reactions. Only the 3′ closest site
of TAS3 could be cut, but the 5′ end fails to cleave the target because a high degree of
sequence mismatch with miR390 has been found [157]. The most interesting fact that
has been noticed by scientists is that the 3′ miR390 target site is not a mandatory part of
the biogenesis process of tasiRNAs. In place of tasiRNAs, phasiRNAs can be generated.
The miR390 can be replaced by many other miRNAs provided that they continue the
cleavage [157]. Secondary siRNA generation is totally stopped on certain occasions, such
as when any type of undesired change takes place in the miR390-binding site. Thus, the
TAS3 5′ region is to be protected at any cost because it triggers the production of tasiRNAs
on a large scale. Apart from these four families in the model plant Arabidopsis thaliana,
many other plant sources that generate tasiRNAs similarly have been detected. Some
solid examples are the following: TAS5 was first identified and reported in tomatoes, three
TAS6 genes have been reported in moss, and a long list of TAS genes (TAS7-9) have been
reported in grapevine (Sanan-Mishra et al. 2021) [226]. Much research is being conducted
worldwide, yet the tasiRNAs belonging to TAS7-10 genes are yet to be fully characterized.
The most interesting fact is that a plethora of non-coding RNAs generates tasiRNAs when
given sufficient trigger by the initiator miRNAs [226].

4.2. tasiRNA Mediated Silencing in Plants

The function of the tasiRNAs is quite unique. The target site of the TASI tasiRNAs is
the pentatricopeptide repeat which comprises the pentatricopeptide-repeat protein (PPR)
genes and one or two other genes as well [216]. On the other hand, the TAS2-tasiRNA
attacks solely the PPR genes. Findings reveal that Arabidopsis contains a count of almost
500 PPR genes, the majority of which are associated with the abiotic stress response, out of
which only a selected few are the potential targets of TASI tasiRNAs. TASI controls and
fine-tunes several heat stress-related transcription factors [227]. In Arabidopsis thaliana, an
elevated thermotolerance level is achieved by the increased magnitude of “heat-induced
TASI target 1 and 2 (HTT1, HTT2)” due to the reduced quantity of TASI-tasiRNA on being
subjected to high heat. Kume et al. 2010 identified the reason behind chilling tolerance. He
obtained a clear picture in which TASI-derived tasiRNAs gathered in significantly lesser
amounts at 4 ◦C, so as a consequence of such a trigger, the gene expression of target genes
such as At151670, At4g29760, and At5g18040 peaked in response in order to survive the
severe cold [228]. TAS3-tasiRNAs are the conserved group of tasiRNAs, and they target the
auxin response factors (ARF), thus guaranteeing a tight grip over a wide range of biological
activities. In Arabidopsis thaliana, TAS3 can self-propagate and give rise to a minimum
number of nine tasiRNAs. Out of these nine, two generally aim for two ARFs such as ARF3
and ARF4, whereas the remaining seven might target other ARFs. The association of ARF3
with tasiRNA predominantly determines the nature of the adaxial surface of the leaves.

Root architecture, leaf morphology, flower architecture, stress responses, hormonal
crosstalk, developmental transition, embryo development, and other characteristics are
controlled by the tasiRNA–ARF complex. It was noted that defective biogenesis of TAS3-
tasiRNA resulted in unnatural floral development such that the development of juve-
nile to fully mature flowers was too fast [229]. This tasiRNA–ARF complex is also in
charge in various other plants (Medicago tranculata, Lotus japonicus, Zea mays, Pyrus serotina,
etc.) [136]. This module plays a role in auxin signaling and nitrogen sensitivity in the moss
Physcomitrella patens, which clearly indicates that this module was coopted in the evolution-
ary process of lower plants [230]. tasiRNAs are equally responsible for AP2 transcription
factors that are present in bryophytes.

Around 5047 tasiRNAs are found to be active in Arabidopsis thaliana and to downregu-
late the myb genes, just about nine tasiRNAs are begotten by TAS4 when activated by the
22-nt miR828. The most prepotent tasiRNAs {TAS4-tasiRNA81(-)} cut MYB-90 (PAP2), MYB-
75 (PAP1), and MYB-113 [218], all of which are associated with the anthocyanin buildup
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pathway and the origin of trichomes in Arabidopsis leaves. Eventually, these tasiRNAs are
negative regulators of trichome initiation [231]. miR828 actively regulates MYB2D/MYB2A
genes in cotton and, subsequently, these genes give rise to tasiRNAs which also hinder the
formation of cotton fiber. The miR828–TAS4 complex is also present in numerous dicot
plants as per reports (not reported in monocots), and participation of miR828-TAS4 has
been observed in apples as well [232].

4.3. Tweaking the tasiRNAs to Improve the Desirable Traits in Plants

TasiRNAs, a subcategory of siRNA (broad category sncRNAs), have a prominent role
in plant vegetative growth and development [233]. The miR390-AGO7 complex gives rise
to the phased TAS3-tasiRNAs, which target the ARF gene family and govern numerous
biological processes in the plant. TAS3-tasiRNAs form a regulatory complex with ARF
(TAS3-tasiRNAs–ARF), and this is considered to be the most conserved complex which
plays a crucial role in the regulation of biological processes such as developmental tran-
sitions, root structure, embryo development, shoot apical meristem development, root
structure, and leaf morphology along with flower and phytohormone crosstalk [173]. In
the model plant Arabidopsis, miR828 targets the MYB genes (PRODUCTION OF ANTHO-
CYANIN PIGMENT1, PAP1, PAP2, and MYB113), which in turn triggers the TAS4-tasiRNAs
and facilitates the anthocyanin biosynthetic pathway [234].

TasiRNAs have also been reported to be actively involved in regulating the plant
stress response. A classic example of thermotolerance was reported in the model plant
Arabidopsis, where miRNA173 is formed by the participation of numerous factors such
as HEAT-INDUCED TAS1 TARGET1 (HTT1), HTT2 (both are targets of TAS1 (trans-acting
siRNA precursor 1)-derived tasiRNAs) and the plants that had been overexpressed with
genes HTT1 and HTT2 showed increased resistance towards thermal stress. In contrast,
plants with high TASI-siRNAs and low HTT gene expression levels displayed susceptibility
to heat stress [227]. Similarly, to combat biotic stress overexpressing two tasiRNAs origi-
nating from TAS1 and TAS2 loci rendered resistance to plants against the deadly fungus
Botrytis cinerea [235].

5. Present Challenges Regarding Non-Coding RNAs

Traditional methods for the identification and prediction of ncRNAs include microar-
ray, RNA sequencing, or fluorescence in situ hybridization (FISH) although paired-end
strand-specific RNA sequencing may provide better transcript information in the near
future. New and improved prediction tools for the tissue-specificity and chromosome
location of ncRNAs are required on an urgent basis. For instance, to better predict the
chromosomal location of ncRNAs, single-molecule RNA FISH (smFISH) was invented to
aid the visualization of individual RNAs using target specific fluorescently labelled oligonu-
cleotide probes [236]. With the increasing advancement of tools and technologies, methods
of mapping the knowledge gained from ncRNAs in the animal system to the plant system
could be possible. Apart from the small non-coding RNAs in plants, deciphering of the
detailed mechanism of biogenesis and mode of action of long non-coding RNAs (lncRNA),
which is still in its early phase, needs to be performed. With the advent of new technologies
such as CRISPR/Cas and large-scale RNA profiling, more and more new classes of ncRNAs
are coming to light, such as the discovery of a novel small nucleolar RNA (snoRNA) or
tRNA-ended lncRNAs, which are not yet found in plants [237]. Moreover, to efficiently
implement the existing knowledge of ncRNAs for creating improved engineered variety of
crops, it is a matter of priority to develop a trait-specific candidate ncRNA catalogue.

6. Concluding Remarks and Future Prospects

miRNAs have long been associated with the cellular regulatory network, but with the
emergence of new research, other non-coding RNAs such as siRNAs, tasiRNAs, or long non-
coding RNAs have also been proven to be significant regulatory molecules. Over the years,
comprehensive research on the biogenesis and mode of action of siRNAs/miRNAs proved
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valuable because that information is rapidly translated into plant–pathogen interaction
studies to develop biotic stress-resilient crops. Some newly discovered non-coding RNAs,
such as tasiRNAs, and phasiRNAs are still in their infancy and need thorough research
to decipher how they are actively involved in the plant’s overall development. With the
increasing population crisis, disease-resistant smart crops with enhanced productivity
would be a top priority to feed the teeming millions. Exploiting non-coding RNAs might be
the key to bringing out the solution because they are involved both in the developmental
and immunity aspects of a plant’s life cycle.
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