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Abstract: In the realm of agriculture, a pressing concern remains the abiotic stresses, such as tem-
perature fluctuation, drought, soil salinity, and heavy metal contamination. These adverse growth
conditions hamper crop yields and global food security. In this review, we present a comprehen-
sive examination of the recent advancements in utilizing genomics and transcriptomics, tools to
enhance crop resilience against these stress factors. Genomics aids in the identification of genes
responsive to stress, unravels regulatory networks, and pinpoints genetic variations linked to stress
tolerance. Concurrently, transcriptomics sheds light on the intricate dynamics of gene expression
during stress conditions, unearthing novel stress-responsive genes and signaling pathways. This
wealth of knowledge shapes the development of stress-tolerant crop varieties, achieved through
conventional breeding programs and state-of-the-art genetic engineering and gene editing techniques
like CRISPR-Cas9. Moreover, the integration of diverse omics data and functional genomics tools
empowers precise manipulation of crop genomes to fortify their stress resilience. In summary, the
integration of genomics and transcriptomics holds substantial promise in elucidating the molecu-
lar mechanisms behind crop stress tolerance, offering a path towards sustainable agriculture and
safeguarding food security amidst shifting environmental challenges.
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1. Introduction

The Food and Agriculture Organization (FAO) of the United Nations reported in its
statistical yearbook 2022 that hunger is still on the rise with 770 million people undernour-
ished in the year 2021. In every continent on the earth, there is moderate to severe level
of food insecurity. Between 2000 and 2020, agricultural land declined by 134 million ha
and water stress is prevalent in most countries [1]. Considering these circumstances, the
primary goal must be ensuring nourishment for the growing population. Unfortunately,
crop production seems to have reached a plateau and is even decreasing in recent times,
primarily because of climate change and the scarcity of arable land for cultivation. In
particular, abiotic stresses like temperature extremes (such as heat or cold stress), water
availability (drought or flooding), salinity, nutrient deficiency or excess, heavy metal tox-
icity, pollution, radiation, and other physical or chemical factors account for significant
crop yield losses every year all over the world [2]. Abiotic stress can disrupt various
physiological and biochemical processes within plants, leading to reduced growth, de-
velopment, and productivity. It can also make plants more susceptible to diseases, pests,
and other biotic stresses [3]. Hence, enhancing agricultural productivity and sustainability
holds immense significance on a global scale. There is an urgent requirement for crop
improvement to guarantee food security for the world’s population [4]. The goal of crop
improvement is to develop improved plant varieties that exhibit desirable traits such as
increased yield, disease resistance, tolerance to environmental stresses, improved nutri-
tional content, and better post-harvest characteristics [5]. During the green revolution,
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biotechnology tools were not widely employed as the field of biotechnology was still in
its infancy. The full potential of modern biotechnology, including genetic engineering and
genomics was realized later [6]. Since then, these technologies have played a significant
role in crop improvement. Multiple “omics” approaches are extensively used for crop im-
provement. The progress made in next-generation sequencing (NGS) has opened avenues
for the development of new omics fields, including genomics, transcriptomics, proteomics,
metabolomics, ionomics, etc. [7]). Especially, genomics and transcriptomics play crucial
roles in crop improvement by providing valuable insights into the genetic makeup and
gene expression patterns of crucial genes and gene families [7]. In this review, we will
focus on genomics and transcriptomics approaches employed in crop improvement against
abiotic stresses.

2. Genomics for Understanding Abiotic Stress Response in Plants

Genomics focuses on exploring and studying the genomes, i.e., the complete set
of DNA or genetic material within an organism, with the help of a range of techniques
and approaches [8]. It involves analyzing and interpreting the structure, function, and
evolution of genomes. Genomics has been broadly classified into functional, structural, and
comparative genomics, based on its methodologies and outcomes [9]. In this section, the
three classes of genomics, their methodologies, and their application in crop improvement
for abiotic stress tolerance will be discussed.

2.1. Functional Genomics

Functional studies of genomes readily produce information that is applicable to crop
improvement. Functional genomics involves the functional characterization of genes
and their interactions with other genes in a regulatory network [10]. Functional genomics
includes different approaches to identify gene functions, such as sequence- or hybridization-
based methodologies, gene inactivation or editing-based approaches, and gene overexpres-
sion [10]. These different approaches will be discussed in detail here.

2.1.1. Gene Inactivation and Editing Approaches for Functional Analysis of Abiotic
Stress-Related Genes
RNAi and VIGS

RNAi technology can be used for gene inactivation and functional studies [11]. It
involves the introduction of small interfering RNA (siRNA) or short hairpin RNA (shRNA)
molecules into the cell. These molecules bind to the target mRNA, leading to its degrada-
tion or inhibition of its protein translation. Through the utilization of RNAi techniques,
the roles of various genes in abiotic stress responses have been uncovered across plant
species. In soybean, overexpression of the Tubby-like protein gene GmTLP8 enhanced the
plant’s resilience to drought and salt stress, while its suppression decreased tolerance [12].
Similarly, in rice, overexpression of the Aux/IAA gene OsIAA20 and the nuclear export
receptor OsXPO1 improved plant tolerance to drought and salt stress, but reduced plant
height and seed-setting rate in the case of OsXPO1. Conversely, suppressing these genes
by RNAi decreased plant resilience to stress and induced developmental defects [13]. In
tobacco, suppression of the APETALA2/ethylene response factor (AP2/ERF) gene NtRAV-4
enhanced root development, leaf photosynthetic ability, and drought tolerance [14].

Virus-induced gene silencing (VIGS) is a transient induction of RNAi by using mod-
ified viral vectors for plant functional genomics. RNAi and VIGS have been used for
improvement of several traits in crop plants. For example, VIGS of CaWRKY40a in pepper
enhances resistance against Xanthomonas campestris infection [15]. In wheat VIGS of
Diketone Metabolism-PKS (DMP), -Hydrolase (DMH) affects β-Diketone biosynthesis and
results in increased glaucousness which is associated with yield [16]. In rice, both the
General Control Non-derepressible 5 (GCN5) and Adenosine Deaminase2 (ADA2) RNAi
lines produced fewer crown roots and showed reduced primary root length and shoot
height compared with the wild type [17]. These examples show that both RNAi and VIGS
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are useful tools in improving several important traits in crops through gene silencing [18].
Antisense oligonucleotides (ASO) are short synthetic nucleic acid sequences that are de-
signed to be complementary to the target gene’s mRNA. Upon binding to the mRNA, ASOs
can prevent mRNA translation or promote degradation of the target mRNA. ASOs can be
chemically modified to enhance stability and specificity, and they are being explored as
therapeutic agents for various genetic diseases [19]. Conditional gene knockout techniques
enable the inactivation of genes in a specific tissue, at a particular developmental stage,
or upon induction by external stimuli. This can be achieved using Cre-loxP or Flp-FRT
systems by flanking the target gene with loxP sites. When Cre recombinase is expressed
under the control of a specific promoter (e.g., tissue-specific promoters or inducible pro-
moters), it mediates the excision of the target gene between the loxP sites, resulting in
gene inactivation [20]. Flp recombinase recognizes FRT sites and catalyzes recombination
between them, resulting in DNA excision, inversion, or rearrangement, depending on the
orientation and arrangement of the FRT sites [21].

ZFN, TALEN, and CRISPR-Cas9

To functionally characterize plant genes, genome editing techniques like targeted mu-
tation, INDEL creation, and genomic sequence modifications can be applied [11]. Common
genome editing tools include Zinc finger nucleases (ZFNs), transcriptional activator-like
effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat
(CRISPR)-Cas9 [11]. ZFNs, for instance, induce double-strand breaks at specific genomic
locations, resulting in targeted mutagenesis such as chromosomal deletions, transgene
removal, and precise DNA integration [22]. They consist of a non-specific cleavage domain
from the FoKI endonuclease fused with custom-designed Cys2-His2 zinc finger proteins,
leading to DSB formation. Plant systems employ error-prone non-homologous end joining
(NHEJ) for DNA repair (Wada et al., 2022). TALEN- and ZFN-based genome editing for
abiotic stress tolerance have not been carried out extensively in crops, yet. But CRISPR-Cas
(clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins)
has been extensively used in crops for genome editing in this decade. Using CRISPR-Cas9
knockout mutation of miRNAs, the OsMIR408 and OsMIR528 lines were developed. These
lines were salt-sensitive, and it has been found that these genes were positive regulators
of salt stress tolerance [23]. In the past decade, many salt stress-related genes have been
identified, for example, OsRR22, identified as a salt stress-related gene, encodes a 696-
amino acid B-type response regulator transcription factor that is involved in cytokinin
signaling. CRISPR/Cas9 editing leading to loss of function mutation in the OsRR22 gene
results in increased salt tolerance [24]. Many genes have been identified using mutation
studies and among them, the drought and salt tolerance (DST) gene was identified as a
non-desirable gene, and is present in the genome due to linkage. Genome editing via
CRISPR-Cas technology has caused 366 bp deletion and has generated the loss of function
mutation of the DST gene. This mutant line shows enhanced leaf water retention under
dehydration stress [25]. Hybrid proline-rich proteins (HyPRPs) have been demonstrated to
play distinct roles in responses to biotic and abiotic stresses across various plant species.
However, in the case of tomato, a specific HyPRP called SlHyPRP1 has been identified as a
suppressor of multiple stress responses. Precise elimination of SlHyPRP1 negative-response
domain(s) using CRISPR-Cas9 has led to high salinity tolerance at the germination and
vegetative stages [26]. The ARGOS8 gene, which acts as a negative regulator in the ethy-
lene response pathway, has been found to induce drought tolerance genes in maize [27].
Although numerous natural genotypes displaying drought resistance have been identified,
the expression of ARGOS8 therein has been observed to be very low. To overcome this
limitation, CRISPR-Cas9 was used with a less-restrictive constitutive promoter called GOS2
to enhance the expression of ARGOS8 [27]. This led to increased drought tolerance in
maize. CRISPR-Cas9-mediated editing of genes encoding two enzymes, poly ADP-ribose
polymerase (PARP) and ADP-ribose specific Nudix hydrolase (NUDX), has resulted in
increased tolerance to oxidative, drought, and genotoxic stresses in maize [27]. NPR1 (non-
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expressor of pathogenesis-related gene 1) serves as a central regulator in the plant defense
response against pathogens. While its role in the defense pathway is well understood,
its involvement in abiotic stress remains unclear. CRISPR-Cas9-mediated mutagenesis
of SlNPR1 in tomatoes has led to reduced drought tolerance, which was accompanied
by decreased expression of key drought-related genes, including SlGST, SlDHN, and Sl-
DREB [28]. These findings suggest that NPR1 not only regulates the response to biotic
stress but also plays a role in the plant’s response to abiotic stress. Overall, these findings
demonstrate the potential of CRISPR-Cas9 technology in crop improvement particularly
for abiotic stress tolerance traits. All this information aids in the development of transgenic
or targeted mutant lines of crops for abiotic stress tolerance.

TILLING

Targeted induced local lesions in genomes (TILLING) is a useful and high-throughput
technique to identify single nucleotide mutations in a specific region of a gene of interest.
TILLING methods are generally employed for screening of both phenotypic and geno-
typic variations in crops under abiotic stresses [29]. Its updated variant EcoTILLING has
been used for the identification of natural polymorphisms [30]. EcoTILLING is useful
particularly for non-model organisms with limited genetic resources and genomic informa-
tion. In one study, chemically mutated lines were screened using the TILLING approach
to identify variants in membrane transport genes and their response to salt stress [31].
Among 2961 mutant lines, 41 mutants with single nucleotide polymorphisms (SNPs) in
nine membrane transporters were discovered. Altered sequences found in the exon region
of seven genes, and these seven mutants exhibited salt tolerance. Additionally, five mutants
with SNPs, i.e., OsAKT1 (outward rectifying Potassium channel 1), OsHKT6 (high-affinity
Potassium transporter 6), OsNSCC2 (nonselective cation channel 2), OsHAK11 (high affinity
Potassium transporter 11), and OsSOS1 (salt overly sensitive 1) showed altered gene expres-
sion levels [31]. These mutants hold potential for developing salt-tolerant lines. Similarly,
chilling-tolerant lines were identified in a TILLING mutant population of Donganbyeo
rice cultivar. Comparative transcriptome analysis revealed that chilling stress tolerance
was associated with monosaccharide catabolic processes, which provide the necessary
energy for cold adaptation in rice [32]. High-temperature stress during grain filling leads
to delayed endosperm formation and grain chalkiness. Multi-omics analysis indicated that
the downregulation of starch synthesis enzymes and upregulation of α-amylases could
be the possible reason behind this [32]. Targeting the TILLING mutants of α-amylase
genes may reduce chalkiness in heat-stressed grains without the need for transgenic ap-
proaches. TILLING was also used to create three mutations in the Brassica rapa CAX1a
transporter. These mutants, along with the original strain (R-o-18), were cultivated in a
saline environment, and various parameters were assessed, including biomass, photosyn-
thesis efficiency, glucose-6-phosphate dehydrogenase (G6PDH), and soluble carbohydrates.
It was revealed that the BraA.cax1a-7 mutation negatively impacted alkalinity tolerance,
resulting in reduced plant biomass, increased oxidative stress, and partial inhibition of
antioxidant responses and photosynthesis. Conversely, the BraA.cax1a-12 mutation en-
hanced plant biomass, increased calcium (Ca2+) accumulation, reduced oxidative stress,
and improved both antioxidant responses and photosynthesis performance [33]. Thus,
BraA.cax1a-12 emerges as a promising mutation for enhancing alkaline tolerance in plants.
Also, a mutant of the tomato HSBP1 (heat shock binding protein 1) gene was identified in
the TILLING population, resulting in a partial loss of protein function. This mutation led
to improved resistance to high temperatures in young plants and increased resilience in
mature plants under repeated heat stress [34]. A list of tools and databases available for
plant gene inactivation or gene editing is given in Table 1.
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Table 1. List of tools and database available for plant gene inactivation or gene editing.

Tool/Database URL Function Citation

CRISPR-PLANT http://omap.org/crispr/ (accessed on 3 October 2023) Selects suitable CRISPR target sites for gene editing in various
plant species. [35]

Cas-Designer www.rgenome.net/cas-designer/ (accessed on 3 October 2023) Chooses CRISPR-Cas9 target sites for various organisms, including plants. [36]

DESKGEN Cloud www.deskgen.com/ (accessed on 3 October 2023) Online platform for gRNA design and CRISPR experiment planning,
supporting various CRISPR applications. [37]

E-CRISP www.e-crisp.org/E-CRISP/ (accessed on 3 October 2023) Fast CRISPR target site identification tool. [38]

GuideScan2 www.guidescan.com/ (accessed on 3 October 2023) Software for designing CRISPR guide RNA (gRNA) libraries. [39]

ZiFiT https://mybiosoftware.com/zifit-4-2-zinc-finger-engineering-tool.html
(accessed on 3 October 2023) Software tool for designing custom zinc finger proteins for gene editing. [40]

CHOPCHOP chopchop.cbu.uib.no/ (accessed on 3 October 2023) Web tool for precise design of CRISPR/Cas9 targets. [41]

CRISPOR http://crispor.gi.ucsc.edu/ (accessed on 3 October 2023) Web tool offering efficiency and specificity scores for CRISPR-Cas9
genome editing. [42]

CRISPR-ERA crispr-era.stanford.edu/ (accessed on 3 October 2023) Tool for evaluating and annotating CRISPR experiment results and
designing gRNAs for gene editing. [43]

CRISPR-P crispr.hzau.edu.cn/CRISPR2/ (accessed on 3 October 2023) Web tool for identifying potential CRISPR target sites in input DNA
sequences. [44]

Cas-OFFinder www.rgenome.net/cas-offinder/ (accessed on 3 October 2023) Web-based tool for searching potential off-target sites in the genome for
CRISPR/Cas-derived RNA-guided endonucleases. [45]

SSFinder https://code.google.com/p/ssfinder/ (accessed on 3 October 2023) Web-based tool for detecting sequences suitable for base editing using
CRISPR/Cas-derived base editors. [46]

JASPAR jaspar.genereg.net/ (accessed on 3 October 2023) Database of transcription factor binding profiles, including those for Cre
and FLP recombinases. [47]

http://omap.org/crispr/
www.rgenome.net/cas-designer/
www.deskgen.com/
www.e-crisp.org/E-CRISP/
www.guidescan.com/
https://mybiosoftware.com/zifit-4-2-zinc-finger-engineering-tool.html
chopchop.cbu.uib.no/
http://crispor.gi.ucsc.edu/
crispr-era.stanford.edu/
crispr.hzau.edu.cn/CRISPR2/
www.rgenome.net/cas-offinder/
https://code.google.com/p/ssfinder/
jaspar.genereg.net/
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2.1.2. Gain-of-Function Approach through Gene Overexpression

The technique of gene overexpression has become a pivotal tool in genomics, offering
valuable insights into gene function and potential applications in crop improvement. In the
past decades, numerous significant studies have underscored the efficacy of this approach,
particularly in enhancing stress tolerance and overall crop performance. For instance, in
rice, OsCYP19-4 was found to be significantly upregulated under cold stress. Overexpres-
sion of OsCYP19-4 in rice demonstrated enhanced tolerance to cold stress and improved
grain yield [48]. Tomato plants overexpressing SlGRAS7 (GAI, RGA, and SCR-like protein
7) exhibited enhanced resistance to drought and salt stress compared to the wild type
(WT) [49]. Elongation factor 1 A (EF1A), a crucial regulator for protein synthesis, has been
found to participate in plant responses to abiotic stress and environmental adaptation.
Overexpression of MtEF1A1 in Medicago truncatula resulted in increased salt stress resis-
tance and reduced levels of reactive oxygen species (ROS) in leaves [50]. Additionally, the
expression of abiotic stress-responsive genes (MtRD22A and MtCOR15A) and calcium-
binding genes (MtCaM and MtCBL4) was upregulated in M. truncatula lines overexpressing
MtEF1A1 [50]. These abiotic stress-related genes could be important for developing stress
resilient crops. Some important genes could impart tolerance to multiple abiotic stresses in
plants when overexpressed. For example, in white birch (Betula platyphylla Suk.), overex-
pression of Ethylene response factor 1.1 (ERF1.1) showed increased tolerance to cold, drought,
and salt stress compared to WT. RNA-Seq analysis has shown 689 differentially expressed
genes (DEGs) in transgenic birch compared to WT. This shows overexpression of single
gene results in triggering of cascade of gene networks leading to stress tolerance [51].
Similarly, Arabidopsis ICE1 (inducer of CBF expression 1) was overexpressed in Indica rice to
improve cold tolerance in cold-sensitive rice. AtICE1 lines showed lower accumulation of
H2O2 and higher membrane stability, thus increased seed survival rate under cold stress.
Also, AtICE1 lines had increased grain yield under cold, drought, and salt stresses [52].
In rice group-A PP2Cs, OsPP108 conferred tolerance to salt and drought stresses when
overexpressed in Arabidopsis. Interestingly, this gene rendered plants highly insensitive to
ABA and proposed to regulate abiotic stress tolerance possibly in an ABA-independent
manner [53]. Similarly, tomato overexpression of the transgenic line of dwarf and delayed
flowering 2 (SlDDF2) under stress-inducible RD29a promoter showed better growth perfor-
mance and tolerance under abiotic stresses including salinity and drought [54]. Overall,
these studies suggested that identification of the key gene inducible under multiple stresses,
and its overexpression in plants, is an effective strategy for developing multi-stress resilient
crops. Details of several other genes that regulate a plant’s abiotic stress response through
overexpression or gene knockout/silencing is given in Table 2.

Table 2. Genes involved in regulating abiotic stress response through gene overexpression and gene
silencing approaches.

Gene Plant Abiotic Stress Tolerance Functional Analysis
Method Citation

GmNAC10 Soybean Cold, salt and
dehydration Overexpression [55]

AtICE1 Rice Cold and drought Overexpression [52]

MP-mi397 Banana Copper and iron
deficiencies, salt and drought Overexpression [56]

BPERF1.1 White Birch Cold, salt and drought Overexpression [51]

OsRIP1 Rice Osmotic stress Overexpression [57]

MiMFTs Mango Salt and osmotic stress Overexpression [58]

JrWOX11 Walnut Salt and osmotic stress Overexpression [59]

SlDDF2 Tomato Drought, salinity and cold Overexpression. [54]
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Table 2. Cont.

Gene Plant Abiotic Stress Tolerance Functional Analysis
Method Citation

OsHis1.1 Rice Heat and cold Overexpression [60]

ZmSLK1 and ZmSLK2 Arabidopsis Drought Overexpression [61]

GmlncRNA77580 Soybean Drought Overexpression [62]

GhSAMS Cotton Drought and salinity VGIS [63]

SlWRKY79 Tomato Salt VGIS [64]

GhMYB36 Cotton Drought VGIS [65]

GmAITR Soybean Salinity CRISPR [66]

OsCCA1 Rice Salinity, osmotic and drought CRISPR [67]

OsmiR535 Rice Salt and osmotic CRISPR [68]

OsPUB7 Rice Drought and salinity CRISPR [69]

NtCycB2 Tobacco Salinity CRISPR [70]

SlGRAS10 Tomato Osmotic stress RNAi [71]

OsIAA20 Rice Drought and salt stress RNAi [72]

Mslea-D34 Alfalfa Drought and salt RNAi [73]

2.2. Structural Genomics

Functional genomics primarily addresses gene functionality, whereas structural ge-
nomics focuses on elucidating the physical structure of genomes. Understanding an
individual genome’s structure is valuable for gene manipulation and DNA segment con-
trol [11]. Structural genomics encompasses the creation of high-resolution genetic and
physical maps. In the context of crop improvement, genome sequencing and molecular
mapping hold significant importance [74]. Molecular markers found on polymorphisms
within DNA play a crucial role in assessing genetic diversity in germplasm [75]. These
DNA markers find extensive utility in plant breeding, aiding in gene mapping, the identifi-
cation of quantitative trait loci (QTL), germplasm evaluation, and marker-assisted breeding
(MAS). Recent advances in genotyping techniques based on single nucleotide polymor-
phisms have accelerated MAS. The advent of next-generation sequencing (NGS) has further
facilitated genome resequencing and the comparison of various genotypes, leading to the
identification of thousands of SNPs [76]. A noteworthy development in molecular markers
is insertion site-based polymorphisms (ISBPs), capitalizing on polymorphisms generated
by insertion regions at repeat junctions [75].

Molecular Mapping and Marker-Assisted Breeding in Crops for Abiotic Stress Tolerance

Molecular mapping techniques play a pivotal role in traditional breeding, facilitating
the development of elite crop varieties. These techniques have unveiled significant struc-
tural genomic variations associated with stress conditions, thus aiding in the identification
of genotypes resilient to such stressors [11]. These variations serve as valuable indicators
for pinpointing the target genes responsible for abiotic stress responses. Furthermore, these
advancements have led to the localization of stress-related quantitative trait loci (QTLs).
The evolution of next-generation sequencing (NGS) technologies and DNA polymorphism
detection techniques, alongside map-based cloning, has further enhanced our ability to
identify additional QTLs and develop the associated markers. These methodologies col-
lectively expedite the breeding process, significantly boosting breeding efficiency [75].
For instance, in the context of salinity tolerance in temperate japonica rice accessions, the
evaluation of 235 accessions marked with 30,000 SNP markers facilitated a genome-wide
association study (GWAS). This study resulted in the identification of 27 QTLs, several of
which were closely positioned to genes linked with calcium signaling and kinases. [77]. In
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a separate study employing bulk segregant analysis–next generation sequencing (BSA-Seq),
four candidate regions were associated with thousand-grain weight (TGW) under alkali
stress conditions. Notably, QTL-qATGW 2-2 was precisely mapped within a 116Kb range be-
tween molecular markers RM13592 and Indel3 on Chr.2, encompassing 18 predictive genes.
This analysis highlighted Os02g39884 as the prime candidate gene in QTL-qATGW 2-2,
representing an alkali-tolerant gene locus in rice [78,79] aiming to enhance stress tolerance
in improved white ponni (IWP) rice by pyramiding QTLs against drought (qDTY 1.1; qDTY
2.1), salinity (Saltol), and submergence (Sub1) through marker-assisted selection (MAS).
These QTLs offer promising avenues for developing triple-stress-tolerant crop varieties.

Meta analysis was conducted to refine the locations of 195 major QTLs related to
drought, salinity, and waterlogging tolerance in barley from various mapping populations.
Identified meta-QTLs (MQTLs) were used to search for candidate genes linked to these
tolerances. These refined MQTLs and candidate genes are crucial for successful MAS in
barley breeding [13]. A comprehensive meta-QTL analysis on maize revealed the presence
of 32 meta-QTLs associated with different abiotic stresses, with a total of 1907 candidate
genes identified [80]. Notably, the meta-QTLs designated as MQTL2.1, 5.1, 5.2, 5.6, 7.1,
9.1, and 9.2 were found to control various stress-related traits, contributing to combined
abiotic stress tolerance. Recently, a total of 33 QTLs associated with drought tolerance
were identified across eight chromosomes in sunflower. Notably, four genes located on
chromosome 13 were found to be associated with drought stress in both the germination and
seedling stages. These genes, namely LOC110898128 (aquaporin SIP1-2-like), LOC110898092
(cytochrome P450 94C1), LOC110898071 (GABA transporter 1-like), and LOC110898072 (GABA
transporter 1-like isoform X2) have been annotated and will undergo further functional
validation [81]. This study contributes insights into the molecular mechanisms underlying
sunflower’s response to drought stress, providing a foundation for drought tolerance
breeding and genetic improvement in sunflower. Thus, in this decade, many molecular
markers and QTLs have been developed and this can help in finding crop accessions with
desired traits and faster breeding for the development of new hybrid lines with multiple
abiotic stress tolerance. A list of tools and databases related to QTLs and molecular markers
in plants are given in Table 3.

Table 3. Database of molecular markers and QTL-based tools in plants.

Tool/Database Name URL Description Citation

Gramene www.gramene.org (accessed
on 3 October 2023)

A resource for comparative analysis of grass
genomes, includes a vast array of molecular

markers.
[82]

SoyBase www.soybase.org (accessed
on 3 October 2023)

A comprehensive database of soybean genetic and
genomic information, including molecular

markers.
[83]

CottonGen www.cottongen.org (accessed
on 3 October 2023)

A database of genetic and genomic information for
cotton, includes molecular markers. [84]

SOL Genomics Network
(SGN)

solgenomics.net (accessed on
3 October 2023)

A database with genomic, genetic, and taxonomic
information for the Solanaceae family and more

distantly related species. Includes molecular
markers.

[85]

MaizeGDB https://www.maizegdb.org/
(accessed on 3 October 2023)

The Maize Genetics and Genomics Database, a
resource for maize sequence, stock, phenotype,
and polymorphism data, including molecular

markers.

[86]

MolMarker
https://sourceforge.net/

projects/molmarker/
(accessed on 3 October 2023)

This software evaluates plant molecular marker
information as well as the related QTL

information.
[87]

www.gramene.org
www.soybase.org
www.cottongen.org
solgenomics.net
https://www.maizegdb.org/
https://sourceforge.net/projects/molmarker/
https://sourceforge.net/projects/molmarker/


Agronomy 2023, 13, 2903 9 of 26

Table 3. Cont.

Tool/Database Name URL Description Citation

The Triticeae Toolbox (T3) https://triticeaetoolbox.org/
(accessed on 3 October 2023)

A database for Triticeae (wheat and barley) genetic
and genomic data, including molecular markers

and QTL information.
[88]

Cucurbit Genomics Database
(CuGenDB)

http:
//cucurbitgenomics.org/

(accessed on 3 October 2023)

A centralized platform for cucurbit genomics and
genetic data, including molecular markers and

QTLs.
[89]

QTL IciMapping

https://isbreedingen.caas.cn/
software/qtllcimapping/2946
07.htm (accessed on 3 October

2023)

A software used for the genetic mapping of QTLs. [90]

R/QTL https://rqtl.org/ (accessed on
3 October 2023)

R/QTL is an interactive QTL mapping software,
implemented as an R package. [91]

CottonFGD https://cottonfgd.org/
(accessed on 3 October 2023)

A functional genomics database for cotton,
including molecular markers and QTLs. [92]

PlantQTL-GE
http://www.scbit.org/qtl2
gene/new/ (accessed on 3

October 2023)

A database that stores QTLs and genetically
mapped genes in plant species and provides a

platform to perform comparative studies on the
genetic architecture of complex traits.

[93]

PeanutBase https://peanutbase.org/
(accessed on 3 October 2023)

A peanut community resource providing genetic,
genomic, gene function, and germplasm data,

including molecular markers and QTLs.
[94]

GnpIS-Ephesis
https://urgi.versailles.inra.

fr/gnpis (accessed on 3
October 2023)

An information system that allows querying and
visualizing genotyping data and phenotypic scores

for plant species. It includes QTL data.
[95]

Wheat@URGI

https://wheat-urgi.versailles.
inra.fr/Seq-Repository/

Annotations (accessed on 3
October 2023)

A database providing a complete view of genetic,
physical, and functional wheat sequence resources,

including molecular markers and QTLs.
[96]

2.3. Comparative Genomic

Comparative genomics involves the comparison of two or more genomes to uncover
both their similarities and differences. In this context, gene annotations derived from model
plants can be applied to newly sequenced crop species that are yet to undergo functional
studies. Essential to this process is knowledge about orthologs, genes that have evolved
from a common ancestor and serve similar functions among species descended from that
ancestor [97]. Furthermore, comparative genomics finds utility in analyzing the expression
profiles of less-studied plants under diverse stress conditions, enabling the identification
of stress-related genes and facilitating inter-species expression profile comparisons. Both
intra- and inter-specific sequence comparisons rely on a range of computational methods,
including multiple sequence alignment, genome-wide comparisons, analyses of orthology
and paralogy, as well as the construction of phylogenetic trees [98]. Various tools and
databases are available for comparative genomic studies. Ensembl, an extensive database,
provides access to numerous annotated genomes and comparative analysis tools, making it
a cornerstone for studying genetic variation across species [99,100]. The UCSC Genome
Browser offers visualization tools for a diverse range of genomes, simplifying cross-species
comparisons and aiding in the exploration of genomic features [101,102]. Another critical re-
source is OrthoDB, a comprehensive catalog of orthologous genes spanning various species,
facilitating the identification of conserved genes with potential roles in evolutionary pro-
cesses [103]. These tools play a pivotal role in comparative genomics, enabling researchers
to uncover evolutionary relationships, conserved genetic elements, and functional insights
across genomes. In the context of crop improvement, these resources are invaluable for

https://triticeaetoolbox.org/
http://cucurbitgenomics.org/
http://cucurbitgenomics.org/
https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
https://rqtl.org/
https://cottonfgd.org/
http://www.scbit.org/qtl2gene/new/
http://www.scbit.org/qtl2gene/new/
https://peanutbase.org/
https://urgi.versailles.inra.fr/gnpis
https://urgi.versailles.inra.fr/gnpis
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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identifying candidate genes, regulatory elements, and conserved pathways that can inform
breeding strategies, enhance crop resilience, and improve agricultural productivity.

Genome-Wide Identification of Genes Families and Promoter Elements Responsible for
Abiotic Stress Response

Genome-wide identification and analysis of gene families in crop genomes typically
rely on the sequence homology to known genes. Expression analysis further aids in identi-
fying functional members and pseudogenes [98]. This approach has successfully identified
numerous gene families in crops. In rice, numerous gene families have been identified
through genome-wide approaches. Moreover, expression analysis helped in marking genes
related to specific functions such as biotic stress, abiotic stress, plant development, etc. For
instance, genome-wide analysis revealed 491 Pentatricopeptide-repeat proteins (PPRs),
categorized into subclass P (246 genes) and subclass PLS (245 genes). Expression analysis
showed induction of many PPR genes under both biotic and abiotic stress [104]. DUF221
domain-containing genes (DDP genes) play essential roles in plant development, hormone
signaling, and stress responses. Comparative genomics in rice identified at least nine DDP
gene members in both domesticated and wild rice, with various expression analyses show-
ing their upregulation under salt stress [105]. Comparative genomic tools identified 81 Ca2+

transport element genes in rice, with their expression established during abiotic stresses
and different developmental stages using microarray and qRT-PCR techniques [106]. Sim-
ilarly, many gene family cell signaling components, such as protein phosphatases [107],
phospholipases [108,109], Ca2+ dependent protein kinases (CDPKs) [110], and receptor-like
cytoplasmic kinases (RLCKs) [111] were identified and analyzed in rice. Additionally,
several other gene families, such as, MADS-box, Phytocyanin, BURP, Arabinogalactan,
Nuclear-factor Y, ABA repressor, and various transcription factors, have been identified as
abiotic stress-responsive genes in rice through comparative genomics approaches [112–118].
Besides rice, the genome-wide approach has been used to identify and analyze of a number
of gene families in different crops like soybean [119,120]), cotton [121,122], Brassica Spp. [52],
Chickpea [123–126] and Maize [127–129].

Identifying stress-inducible promoter regions is important for deploying transgenes
with specific promoters for optimum expression under stress conditions. Studies have
shown the effectiveness of promoters from stress-responsive genes, such as OsABA2,
RAB16A, RD29A, and HP1 in driving strong expression of genes under abiotic stress
conditions [130]. Transcription profiles of rice, soybean, and Arabidopsis revealed con-
served sequences in cold and dehydration-inducible promoters, including the abscisic acid-
responsive element (ABRE). Novel cold-inducible cis elements CGTACG and GTAGTA
were identified in rice genes promoters [131]. The AL resistance transcription factor1
(ART1), a C2H2 type zinc finger transcription factor with specific cis-acting elements in
the promoter, was found to be involved in detoxifying aluminum in rice [132]. Com-
parative studies in rice and Arabidopsis revealed the occurrence and arrangements of
cis-regulatory elements ABRE and CE3 in gene promoters, with ABRE forming ABA-
responsive complexes and exhibiting distinct combinations with CE3 in rice [133]. These
findings significantly contribute to our understanding of the genetic mechanisms involved
in plant response to environmental stresses, paving the way for future research and poten-
tial applications in crop improvement. In summary, comparative genomics approaches
have successfully identified various gene families involved in abiotic stress responses.
These findings provide valuable insights into the genetic mechanisms underlying stress
tolerance and can facilitate the development of stress-tolerant crop varieties.

3. Transcriptomics Techniques

Transcriptomics encompasses the comprehensive analysis of all RNAs transcribed by
a cell or tissue, including both coding and non-coding RNA at a specific functional state. It
involves the study of the type, structure, function, and regulation of gene transcription [134].
Transcriptomics provides valuable insights by quantitatively analyzing changes in plant
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gene expression. It enables the exploration of regulatory networks and whole-genome
expression patterns, which help in revealing novel stress tolerance-associated genes in crop
plants [135].

Advancements in transcript sequencing and analysis technologies have provide a sig-
nificant upthrust to the field of transcriptomics. Traditional methods like northern blotting
and RT-PCR are limited to analyzing single transcripts or small groups of transcripts at
a time [136]. However, the introduction of microarrays in the mid-1990s revolutionized
transcript profiling, enabling simultaneous analysis of thousands of genes [137]. Subse-
quently, real-time RT-PCR or RT-qPCR emerged as a sensitive technique for detecting
low-abundance transcripts and became popular for both absolute and relative quantifi-
cation of gene expression [134]. A major breakthrough happened with the advent of
next-generation sequencing (NGS), which profoundly impacted gene expression profiling.
NGS-based RNA sequencing (RNA-Seq) has widened our horizon of understanding gene
regulatory networks and epigenetics. This powerful technology enables the detection and
quantification of known, novel, and less abundant transcripts, encompassing both coding
and non-coding RNA [136]. The transcriptomics approaches involved in crop improvement
against abiotic stress are summarized in Figure 1.
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Figure 1. Genomics and Transcriptomics Approaches for Enhancing Abiotic Stress Tolerance in
Plants: an overview of the genomics and transcriptomics methodologies in the study of abiotic
stress tolerance. Genomics plays a crucial role in the identification and functional analysis of stress-
responsive genes, while transcriptomics enables the comprehensive analysis of gene expression
patterns. Together, these approaches contribute significantly to crop improvement efforts.

ESTs (expressed sequence tags) are random individual transcripts obtained from
cDNA libraries and sequenced using one-time, low-throughput Sanger sequencing. Ini-
tially, ESTs were considered an efficient means of determining the gene content of an
organism without the need for whole-genome sequencing, making them a valuable tool in
early transcriptomics research [134]. Another sequencing-based gene expression analysis
technique emerged in 1995, known as serial analysis of gene expression (SAGE). This
method involved Sanger sequencing of concatenated random transcript fragments, and
quantification is achieved by matching the transcripts with known genes. A variant of
SAGE utilizing high-throughput sequencing techniques, called digital gene expression
analysis, was also briefly employed [136]. However, these techniques have been overtaken
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by contemporary approaches such as microarrays and RNA-Seq, which offer more ad-
vanced capabilities and broader applications in transcriptomics research. These modern
transcriptomics technologies have significantly advanced our understanding of gene ex-
pression regulation and the complexity of cellular processes. They have become essential
tools for researchers studying various biological phenomena, including stress responses,
development, and disease mechanisms [138]. The continuous development of transcrip-
tomics methods promises to unveil further layers of gene regulation and functional insights
in the future.

3.1. ESTs and Microarray for Identification of Abiotic Stress Responsive Genes

Over the years, numerous candidate genes related to abiotic stress in different plant
species have been identified using ESTs and microarray techniques. For example, tran-
script profiling using microarrays and ESTs revealed that Glutathione S-transferases (GSTs)
exhibit similar and specific functions during various stages of rice development, while
also mediating cross-talk between different stress and hormone response pathways [139].
Microarray expression analysis revealed significant differential expression under abiotic
stresses such as drought, salinity, and cold and during reproductive developmental stages in
important gene families like protein phosphatases [107], phospholipase A and D [108,140],
phospholipase C [110], Calcium transport elements [106], the MADS box family [112], and
the C2H2 zinc finger TF family [141] in rice. The expression patterns of most of these
differentially expressed genes were validated using qRT-PCR. Heat shock proteins (HSPs)
are another important group involved in plant response to heat stress and regulated by
heat shock factors (HSFs). In rice, HSFs are categorized into three classes: A, B, and C [142].
Expression profiling through ESTs, microarrays, and qRT-PCR showed that eight OsHSFs
are upregulated during seed development and six HSFs during abiotic stress in both roots
and shoots. OsHSFA2a and OsHSFA3 are upregulated in response to cold and drought
stress, while OsHSFB4a showed little or no change in expression [143]. Affymetrix mi-
croarray technology was used to analyze the expression of the AP2/EREBP gene family in
Chaling wild rice and cultivated cold-sensitive rice cultivar Pei’ai64S. Microarray revealed
that 36 AP2/EREBP genes had a much higher expression level in Chaling wild rice than
in Pei’ai64S [144]. Rice is a C3 plant and has become a model organism for studying the
genetic engineering of the C4 pathway. Several C4 gene families were identified in the
rice genome through sequence homology using maize C4 gene sequences as queries [145].
Expression analysis using EST and FL-cDNA databases indicated the presence of at least
one EST or FL-cDNA for all the identified genes. In addition, abiotic stress-related genes
were also identified [145].

Using EST and microarray analysis, researchers identified genes associated with
drought stress tolerance in cotton. For instance, genes encoding dehydration-responsive
element binding (DREB) transcription factors were found to be upregulated under drought
conditions, suggesting their role in regulating drought-responsive genes [146]. Additionally,
using EST and microarray analysis in cotton, many abiotic stress responsive genes were
identified, which included MYB-related, C2H2, FAR1, bHLH, bZIP, MADS [147] and RTNLB5,
and PRA1 [148]. Similarly, in barley, a pre-mRNA processing (Prp1) gene was found to
be crucial during seed development and abiotic stress [149]. Moreover, in barley, EST
databases helped in revealing the roles of HKT (high-affinity K+ transporter) proteins in
regulating potassium (K+) uptake under saline conditions [150]. Also, SbDREB2A, encoding
a DREB transcription factor, was found to be upregulated under drought conditions using
ESTs and microarray analysis. Its overexpression enhanced drought tolerance in transgenic
sorghum plants [151]. To facilitate such research, there are two large EST repositories,
edbEST, and UniGene, both hosted by NCBI, which include EST data from a variety of
organisms [152]. These repositories serve as valuable resources for scientists to access and
analyze transcriptomic data for various research purposes.
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3.2. RNA-Seq for Identification of Genes Involved in Abiotic Stress Responses

RNA-Seq is a powerful technique that combines high-throughput sequencing with
computational methods to quantify and analyze transcripts within an RNA pool. The
sequencing process generates nucleotide sequences, typically around 100 base pairs in
length, although the actual read length can vary depending on the specific sequencing
method used [153].

The fundamental principle of RNA-Seq involves the alignment of these generated
sequences either to a reference genome or to each other. By mapping the RNA transcripts,
one can identify the specific genes present within a genome and also determine which
genes are actively expressed at a particular point in time [153]. One of the major advantages
of RNA-Seq is its ability to accurately measure gene expression levels. Unlike microarrays,
which rely on hybridization to predefine probes, RNA-Seq provides a more comprehensive
and quantitative view of gene expression. It can detect both known and novel transcripts,
including non-coding RNA, thereby offering a more complete understanding of the tran-
scriptome. Additionally, RNA-Seq is not limited by the predefined nature of microarrays,
allowing researchers to explore previously unannotated regions of the genome and discover
novel transcripts and isoforms. This capability has been instrumental in identifying alter-
native splicing events, alternative transcription start sites, and other post-transcriptional
regulatory processes [138]. RNA-Seq analysis between imbibed seeds and dry seeds of
rice showed that genes related to the cell wall, abiotic stress, and antioxidants were asso-
ciated with stress response during imbibition and germination [154]. Genes like receptor
kinase (e.g., OsCRK2), pectinesterase (e.g., OsPME3), polygalacturonase (e.g., OsPGIP1),
cupin-domain protein (e.g., OsCP1), methyltransferases (e.g., OsTRMT1), SPX domain (e.g.,
OsPHR2), GSTs (e.g., OsGSTL3), and peroxidase (e.g., OsAPX2) were significantly expressed.
GSTs were particularly implicated in preventing H2O2 accumulation during the initial
imbibition stage, contributing to successful seed germination [154]. RNA-Seq analysis
of Aus, a drought and heat-tolerant cultivar of rice, identified 56 differentially expressed
genes in developing seeds under combined drought and heat stresses [155]. Among them,
B12288 (RAB21), a dehydrin family LEA protein, was significantly induced. Although
sequence differences were not large, functional effects were observed, highlighting the role
of dehydrins in stress regulation responses. RNA-Seq analysis in tomatoes showed that
C2H2-type zinc finger protein genes C2H2-ZFP3, -5, and -8 were involved in cold, salt, and
drought resistance [156]. RNA-Seq analysis of rice treated with Cd and As revealed genes
associated with redox control, stress response, transcriptional regulation, transmembrane
transport, signal transduction, biosynthesis, and metabolism of macromolecules and sulfur
compounds [157].

In wheat (Triticum aestivum), RNA-Seq analysis revealed that R2R3-MYB family genes
are abiotic stress-responsive [158]. In maize (Zea mays), RNA-Seq analysis under abiotic
stress showed involvement of various transcription factors like ERF, NAC, ARF and HD-
ZIP to initiate abiotic stress response [159]. Soybean (Glycine max) experiencing water
deficit stress displayed significant changes in gene expression in RNA-Seq analysis, with
upregulation of genes involved in ABA signaling, including GmPYLs and GmPP2Cs, both
part of the ABA receptor complex [160]. Recently, RNA-seq analysis of two contrasting cul-
tivars of chickpea, i.e., K+ deficiency-sensitive (Pusa362) and -tolerant (Pusa372), identified
hundreds of differentially expressed genes in both the cultivars [161]. These genes belonged
to different functionally categories and pathways. This analysis provided a significant
insight into the K+ deficiency-tolerant mechanism in the important legume crop chickpea.

The wealth of information gained from these RNA-Seq studies contributes to ad-
vancing our knowledge of plant stress responses and has laid a foundation for targeted
strategies to improve crop resilience and ensure global food security. Various databases
that encompass mRNA sequences obtained from crops have been developed over the years.
A list of databases related to plant expression is given in Table 4.
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Table 4. RNA-Seq-based and gene expression databases.

Database Name URL Short Particulars Citation

NCBI Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/ (accessed on 3 October 2023) A repository for gene expression data [162]

ArrayExpress https://www.ebi.ac.uk/arrayexpress/ (accessed on 3 October 2023) A public repository for gene expression data [163]

Plant Expression Database (PLEXdb) https://www.plexdb.org/ (accessed on 3 October 2023) A resource for plant gene expression data [164]

Genevestigator https://genevestigator.com/ (accessed on 3 October 2023) A gene expression database and analysis platform [165]

Rice Expression Database (RiceXPro) http://ricexpro.dna.affrc.go.jp/ ( accessed on 3 October 2023) A repository for rice gene expression data [166]

SoyBase https://www.soybase.org/ (accessed on 3 October 2023) A repository for soybean genomics data [83]

MaizeGDB https://www.maizegdb.org/ (accessed on 3 October 2023) A database for maize genetics and genomics [167]

Wheat Expression Browser https://wheat.pw.usda.gov/ (accessed on 3 October 2023) A platform for wheat gene expression data [168]

Tomato Expression Atlas http://tea.solgenomics.net/ (accessed on 3 October 2023) A resource for tomato gene expression data [169]

CottonFGD https://cottonfgd.net/ (accessed on 3 October 2023) A functional genomics database for cotton [83]

SorghumFDB http://structuralbiology.cau.edu.cn/sorghum/index.html (accessed
on 3 October 2023) A repository for sorghum genomics data [170]

BarleyBase https://www.plexdb.org/ (accessed on 3 October 2023) A database for barley genomics data [171]

Legum IP V3 https://plantgrn.noble.org/LegumeIP (accessed on 3 October 2023) A database for legume RNA-Seq data [172]

Oryza Express https://rice.plantbiology.msu.edu/ (accessed on 3 October 2023) A repository for rice gene expression data [173]

Coexpression Browser (BAR) https://bar.utoronto.ca/ (accessed on 3 October 2023) A database for gene coexpression in plants [174]

PLEXdb https://www.plexdb.org/ (accessed on 3 October 2023) A repository for plant gene expression data [164]

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.plexdb.org/
https://genevestigator.com/
http://ricexpro.dna.affrc.go.jp/
https://www.soybase.org/
https://www.maizegdb.org/
https://wheat.pw.usda.gov/
http://tea.solgenomics.net/
https://cottonfgd.net/
http://structuralbiology.cau.edu.cn/sorghum/index.html
https://www.plexdb.org/
https://plantgrn.noble.org/LegumeIP
https://rice.plantbiology.msu.edu/
https://bar.utoronto.ca/
https://www.plexdb.org/
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3.3. Third Generation Sequencing for Identification of Abiotic Stress Related Genes

The recent surge in the third-generation sequencing (TGS) technologies has signifi-
cantly impacted the field of transcriptomics, as TGS offer several advantages over tradi-
tional first- and second-generation sequencing [175]. Third-generation sequencing methods,
such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) provide
longer reads and can directly sequence RNA molecules. This feature significantly facili-
tates the transcriptional profiling as they enable the identification of full-length transcripts
without the need for assembly or the use of sophisticated bioinformatics tools [175]. Impor-
tantly, TGS help in identifying novel genes involved in abiotic stress responses in plants.
Recently, PacBio sequencing was employed to sequence the transcriptomes of ten rice
cultivars belonging to three distinct subspecies under normal and abiotic stress conditions.
It was able to reconstruct high-quality, plant-specific isoforms, ranging from 37,500 to
54,600 isoforms per cultivar. To reduce redundancy in the sequences, the isoforms were
consolidated and assessed for protein completeness. Approximately 40% of the identified
transcripts represented novel isoforms not present in the reference transcriptome of Nippon-
bare rice. Moreover, for the drought- and heat-tolerant aus cultivar N22, 56 differentially
expressed genes were identified in developing seeds under the combined stress of heat
and drought [155]. Similarly in poplar PacBio sequencing and RNA-Seq was combinedly
used to identify the role of alternative splicing (AS) in cold stress tolerance. It was found
that 1261 AS events in Populus trichocarpa and 2101 in P. ussuriensis among which intron
retention, with a frequency of more than 30% was the most prominent type under cold
stress [176]. Similarly in cotton, long read transcripts were sequenced using PacBio to
identify novel transcripts involved in salt stress. A significant number of DEGs involved
in various ion homeostasis, hormone signaling, cell wall modification and transcription
factors were found [136]. The Arachis glabarata transcriptome was sequenced using PacBio
sequencing and several DEGs related to abiotic stress at various organs/tissues were ob-
tained. This study identified 30 polyphenol oxidase (PPO) encoding genes, and most of
them were proposed to be involved in biotic or abiotic stresses responses [177].

The cost effectiveness and high-throughput nature of TGS has made it useful for whole
genome sequencing of many under-explored crops. Rehmannia glutinosa, a medicinal crop
was recently sequenced using ONT sequencing. The assembly genome is 2.49 Gb long
with a scaffold N50 length of 70 Mb and high heterozygosity (2%). The newly generated
reference genome sequence of R. glutinosa increases the genomic resources in the Lamiales
order [178]. Cunninghamia lanceolata (China Fir) belongs to Gymnospermae, which are fast-
growing and have desirable wood properties. However, in this species genes involved in
stress regulation are little known. Direct RNA sequencing using nanopore technologies has
revealed a total of 51 AP2/ERF, 29 NAC, and 37 WRKY transcription factors in C. lanceolata.
The expression of most of the NAC and WRKY TFs increased under cold stress. These
provided preliminary clues about genes involved in stress regulation in Cunninghamia [179].
This evidence suggests that TGS has not only simplified transcriptomics studies but also
provide valuable and novel insight into stress responses in plants.

4. Comparative Analysis of Tools Employed in Genomics and Transcriptomics Studies

As discussed earlier, genomics and transcriptomics encompasses several tools and
techniques, each with its own advantages and disadvantages. For instance, TILLING is
used for precise and systematic identification of specific mutations in a target gene, making
it a valuable tool for functional analysis. However, TILLING can be labor-intensive and
may not be as high-throughput as desired, particularly for large-scale screening [180]. QTL
mapping is a genetic analysis approach focused on identifying genomic regions associated
with specific traits or quantitative character. Thus, it is instrumental in understanding
the genetic basis of complex traits. However, QTL mapping has limited resolution and
often relies on the presence of genetic markers, which can restrict its application in cases
where markers are not readily available [181]. Comparative genomics, while invaluable
for understanding gene function and evolution, may have limitations in comparing vastly
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different species or distant evolutionary relatives. The interpretation of observed similarities
and differences can be complex and may not always provide straightforward answers about
gene function or regulatory elements (Tam et al., 2019). Gene inactivation methods, such
as CRISPR-Cas9, ZFNs, and TALENs, are highly precise in gene editing and inactivation,
but they may require complex design and validation procedures. Also, there are potential
off-target effects, where unintended and untargeted genetic modifications or disruptions
can occur, necessitating careful scrutiny and validation of the edited genes [182].

Microarray analysis enables simultaneous analysis of gene expression patterns, mak-
ing it useful for studying gene regulation on a large scale. However, it is limited to known
probes, and there is a risk of cross-hybridization between closely related sequences [183].
ESTs are valuable for gene expression analysis, identifying, and cataloging genes. Never-
theless, they provide only partial gene information, which can be limited in comprehensive
studies [184]. RNA-Seq, on the other hand, offers high-throughput transcriptome analysis
and is exceptionally valuable for understanding gene expression patterns. However, it
requires complex data analysis and can be costly [185]. RT-qPCR is highly sensitive in gene
expression analysis, but it necessitates prior knowledge of the target sequence, making it
most suitable for studying known genes [186]. When selecting a specific tool for research,
one should take into account the scale of their project, including both the cost implications
and the number of genes they intend to target. A comprehensive list of tools and techniques
involved in genomics and transcriptomics studies, with their year of origin, in chronological
order, along with their advantages and disadvantages are given in Table 5.

Table 5. A list of tools involved in genomics and transcriptomics with their advantages and disad-
vantages.

Technique Year of Origin Application Advantages Disadvantages Citation

FISH (Fluorescence In
Situ Hybridization) 1969 Gene mapping

Visualizes specific
DNA sequences on

chromosomes

Limited to fixed cells,
labor-intensive [187]

PCR (Polymerase Chain
Reaction) 1971 In vitro DNA

amplification
Amplifies DNA

quickly
Susceptible to contamination,

limited to short sequences [188]

Restriction Enzyme
Mapping 1976 Enzymatic gene

mapping
Maps DNA
fragments

Limited resolution,
labor-intensive [189]

Sanger Sequencing (DNA
Sequencing) 1977 Chain-termination

sequencing
Reads DNA base by

base
Slow, expensive for whole

genomes [190]

QTL Mapping
(Quantitative Trait Loci

Mapping)
1988 Genetic linkage

analysis

Identifies genomic
regions associated

with traits

Limited resolution, requires
genetic markers [186]

ESTs (Expressed
Sequence Tags) 1991 Gene expression

analysis
Identifies and
catalogs genes

Provides only partial gene
information [191]

RT-PCR (Reverse
Transcription PCR) 1992 Gene expression

analysis Highly sensitive Requires prior knowledge of
the target sequence [192]

Transposon-Mediated
Insertional Mutagenesis 1995 Gene disruption Random gene

disruption

Lack of precise control,
potential for multiple

insertions
[193]

SAGE (Serial Analysis of
Gene Expression) 1995 Quantification of

mRNA tags
Quantifies gene

expression
Requires a significant amount

of starting material [194]

Antisense
Oligonucleotides 1995 Inhibition of gene

expression
Specific gene

silencing
Transient effect, variable

efficiency [195]

Microarray Analysis 1995
Hybridization-based

gene expression
analysis

Simultaneous
analysis of gene

expression

Limited to known probes,
cross-hybridization risk [196]
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Table 5. Cont.

Technique Year of Origin Application Advantages Disadvantages Citation

VIGS (Virus-Induced
Gene Silencing) 1995 Gene silencing Silences gene

expression in plants
Limited to plants, viral

interactions [197]

RNAi Technology (RNA
interference) 1998 Gene silencing Specific inhibition of

gene expression
Off-target effects, variability

in silencing efficiency [198]

RNA-Seq 2008 Next-Generation
Sequencing (NGS)

High-throughput
transcriptome

analysis
Data analysis complexity, cost [138]

NGS (Next-Generation
Sequencing) 2008

High-throughput
sequencing (e.g.,

Illumina)

High-throughput
genome sequencing

Data storage and analysis
demands [199]

ZFNs (Zinc Finger
Nucleases) 2009 Genome editing

Precise gene
targeting, reduced
off-target effects

Design complexity, higher
cost [200]

Single-Cell RNA
sequencing 2009 Single-cell analysis Reveals cellular

heterogeneity
Complex data analysis,
limited to single cells [201]

CRISPR-Cas9 Genome
Editing 2012 Genome editing Precise gene editing

and inactivation
Off-target effects, ethical

concerns [202]

TALENs (Transcription
Activator-Like Effector

Nucleases)
2013 Genome editing

Precise gene
targeting, reduced
off-target effects

Design complexity, higher
cost [203]

Long-Read Sequencing
(PacBio) 2019 Long-read

sequencing
Sequences longer
DNA fragments Higher error rate, cost [204]

5. Conclusions and Future Prospects

In conclusion, the synergy between genomics and transcriptomics has ushered in a new
era of understanding and enhancing crop responses to abiotic stress conditions. Genomics,
encompassing functional, structural, and comparative genomics, empowers researchers
with a suite of powerful tools. Functional genomics techniques, including RNAi, VIGS, and
genome editing with CRISPR-Cas9, enable precise gene manipulation and identification
of pivotal stress-responsive genes. Structural genomics contributes to the development
of molecular markers, QTLs, and marker-assisted breeding, while comparative genomics
unveils conserved genes and pathways across species. These insights facilitate the selection
of candidate genes for crop improvement, thereby expediting the breeding of stress-tolerant
varieties crucial for sustainable agriculture in the face of climate change. Transcriptomics
techniques, on the other hand, have revolutionized our comprehension of gene expression
regulation under abiotic stress. Traditional methods like northern blotting and microarray
paved the way for advanced approaches like RNA-Seq and third generation sequencing
allowing simultaneous analysis of thousands of genes and the detection of both known and
novel transcripts. These modern techniques have uncovered a plethora of abiotic stress-
responsive genes, shedding light on the intricate mechanisms underlying stress tolerance.
The wealth of information generated through transcriptomics provides invaluable insights
into potential targets for crop improvement. However, there has been substantial progress,
but certain crucial findings are still lacking. While numerous stress-responsive genes
have been identified, the critical functional characterization of these genes remains a
significant challenge, hindering our ability to precisely target crop improvement efforts.
Most studies have focused on identifying major genes or pathways involved in stress
responses. In-depth investigation is needed to understand the quantitative nature of stress
tolerance traits and how multiple genes with small effects contribute to overall tolerance.
Additionally, understanding the role of epigenetic modifications and non-coding RNAs in
stress responses is an emerging area, warranting further investigation. Addressing these
research gaps, along with considerations of environmental variability and the validation of
findings in real-world field trials, is crucial for realizing the full potential of genomics and
transcriptomics in enhancing crop resilience and food security.
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