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INTRODUCTION

Rhizoctonia solani is a necrotrophic fungal pathogen 
that causes economically important diseases in vari-
ous cereals, vegetables and ornamental plants (Francis 
et al., 2023; Liao et al., 2022; Molla et al., 2020; Zrenner 
et al., 2020). The pathogen has been broadly classi-
fied into 14 different anastomosis groups and its strains 
belonging to AG1- IA are known to cause sheath blight 
disease, one of the most devastating diseases in rice 
(Ghosh et al., 2014, 2017; Senapati et al., 2022; Singh 

et al., 2019; Zhang et al., 2024). Considering that the 
source of complete disease resistance against this 
deadly pathogen is not available in the rice germplasm 
(Molla et al., 2020), efforts have been made to identify 
various molecular determinants that play important roles 
during host- pathogen interactions (Dauda et al., 2023; 
Francis et al., 2023; Ghosh et al., 2019, 2021; Wibberg 
et al., 2016; Yang et al., 2023; Zheng et al., 2013). Under 
favourable conditions, the infection propagules of R. so-
lani (i.e., sclerotia) germinate to produce infection cush-
ions that potentially absorb sugar and nitrogen from the 
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Abstract
Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that 
causes sheath blight disease in rice. It deploys effector molecules as well 
as carbohydrate- active enzymes and enhances the production of reactive 
oxygen species for killing host tissues. Understanding R. solani ability to sus-
tain growth under an oxidative- stress- enriched environment is important for 
developing disease control strategies. Here, we demonstrate that R. solani 
upregulates methionine biosynthetic genes, including Rs_MET13 during in-
fection in rice, and double- stranded RNA- mediated silencing of these genes 
impairs the pathogen's ability to cause disease. Exogenous treatment with 
methionine restores the disease- causing ability of Rs_MET13- silenced R. 
solani and facilitates its growth on 10 mM H2O2- containing minimal- media. 
Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, 
an antioxidant enzyme involved in the repair of oxidative damage of methio-
nine, is upregulated upon H2O2 treatment and also during infection in rice. 
Rs_MsrA- silenced R. solani is unable to cause disease, suggesting that it is 
important for the repair of oxidative damage in methionine during host colo-
nization. We propose that spray- induced gene silencing of Rs_MsrA and de-
signing of antagonistic molecules that block MsrA activity can be exploited as 
a drug target for effective control of sheath blight disease in rice.
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host plant to fuel its growth (Copley et al., 2017; Kanwar 
& Jha, 2019; Sinclair, 1970). It has been proposed that 
fungal pathogens like Magnaporthe oryzae (causal agent 
of rice blast disease) need to synthesize certain amino 
acids including methionine, that are present in scarce 
amounts in the leaf apoplast (Saint- Macary et al., 2015).

Methionine (Met), a sulfur- containing amino acid is 
necessary for several important physiological and met-
abolic activities, including the initiation of protein synthe-
sis and methylation of proteins, RNA and DNA (Escaray 
et al., 2022; Saint- Macary et al., 2015; Scott et al., 2020; 
Shrivastava et al., 2021). It plays a pivotal role in regulating 
cell proliferation (Sutter et al., 2013; Walvekar et al., 2018), 
autophagy (Sutter et al., 2013) and respiration (Tripodi 
et al., 2018) in fungi. Methylenetetrahydrofolate reductase 
(MTHFR) catalyses the conversion of methylenetetrahy-
drofolate to methyl triglutamate tetrahydrofolate and plays 
a key role in methionine biosynthesis (Yan et al., 2013). 
Silencing of methionine biosynthesis genes compromises 
the growth and virulence of plant pathogenic fungi, includ-
ing Magnaporthe, Alternaria, Aspergillus and Fusarium 
(Frandsen et al., 2010; Gai et al., 2021; Li et al., 2023; 
Saint- Macary et al., 2015; Scott et al., 2020; Sieńko 
et al., 2007). Methionine residues in various proteins are 
prone to oxidative damage, wherein they are oxidized to 
inactive forms i.e., methionine- S- sulfoxide/ methionine- 
R- sulfoxide (Aledo, 2019; Moskovitz & Smith, 2021). Most 
organisms possess two copies of methionine sulfoxide 
reductases (Msr), MsrA and MsrB, to repair the damage 
by catalysing the reduction of methionine- S- sulfoxide 
and methionine- R- sulfoxide residues to methionine, re-
spectively (Moskovitz & Smith, 2021). Notably, the role of 
MsrA/B homologues in fungal growth and pathogenesis 
remains poorly understood.

In this study, we report that methionine promotes hy-
phal branching, and the formation of infection cushions 
and potentially assists in the management of oxidative 
stress during colonization of R. solani in rice. The si-
lencing of R. solani methionine biosynthetic genes 
(Rs_Met13, methionine tetrahydrofolate reductase; 
Rs_MET6, 5- methyltetrahydropteroyltriglutamate- hom
ocysteine methyltransferase; and Rs_ ArAT, aromatic 
amino acid transaminase) compromise the pathogen 
to cause sheath blight disease in rice. We also pres-
ent evidence that R. solani MsrA (Rs_MsrA) is required 
for successful infection and propose that it can be an 
important target for designing antifungal molecules for 
sheath blight disease control.

EXPERIMENTAL PROCEDURES

Growth of R. solani

Rhizoctonia solani (AG1- IA strain BRS1) was maintained 
on PDA (39 g/L; Potato Dextrose Agar; Himedia, Mumbai, 
India) plates at 28°C (Ghosh et al., 2021). For various 

treatments, R. solani sclerotia was grown in Czepek 
Dox media (a semi- synthetic minimal media, MM; Swain 
et al., 2017) with or without supplementation of methio-
nine (3, 7 and 14 mM; Sigma Aldrich Co.), hydrogen per-
oxide (1 and 10 mM, Thermo Fisher Scientific Inc.) and 
methionine sulfoxide (7 mM; Tokyo Chemical Industry 
Co., Ltd.). The fungal growth diameter and sclerotia count 
were recorded at 3 and 7 dpi, respectively.

Mycelial branching pattern in R. solani

Rhizoctonia solani sclerotia were grown on thin layered 
agar (1%) slides, with and without methionine (7 mM). 
The slides were incubated in a petri- dish containing 
moist sterile filter paper (to maintain humidity) at 28°C 
for 3 days. Upon staining with WGA- FITC (20 μg/mL; 
Sigma- Aldrich Co.) for 30 min and thorough washing 
with sterile MilliQ water, the slides were analysed under 
a GFP filter of Confocal Laser Scanning Microscope 
(AOBS TCS- SP5, Leica, Germany) using the 20× ob-
jective. LAS AF Version: 2.6.0 build 7266 software 
was used to analyse images. The experiment was per-
formed using three biological and technical replicates.

Computational analysis

The target genes (Rs_MET13, Rs_MET6, Rs_ArAt, 
Rs_MsrA) were identified in the R. solani genomes 
using homologous gene sequences of Saccharomyces 
cerevisiae. Further, the protein sequences of Rs_
MET13/ Rs_MsrA homologues in other fungal species 
were downloaded from the NCBI database and sub-
jected to phylogenetic analysis using MEGAX, follow-
ing the Neighbour- joining algorithm with 500 bootstrap 
values. The evolutionary distances, measured as the 
number of amino acid substitutions per site, were cal-
culated using the JTT matrix- based technique. The 
Clustal Omega (https:// www. ebi. ac. uk/ Tools/  msa/ clust 
alo/ ) was used to align the amino acid sequences. 
Domain analysis was performed using InterPro (ftp. ebi. 
ac. uk/ pub/ datab ases/ inter pro/ ).

R. solani infection in rice

Rice (Oryza sativa cultivar PB1, indica genotype) was 
grown under greenhouse conditions, at 28°C temper-
ature, 80% relative humidity and 16/8 h of day/night. 
The sheath of 45- day- old tillers of rice was inoculated 
with either buffer- treated/dsRNA- silenced/MTX- treated 
(Methotrexate;1 mM, TCI Chemicals) R. solani sclero-
tia (Ghosh et al., 2014) to monitor disease progression. 
Wherever mentioned, methionine (7 mM) was sprayed 
onto the infected rice tilers, daily up to 4 dpi. The vertical 
sheath colonization (VSC), i.e., the distance between 
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tips of the lowest and highest lesions in the sheath was 
recorded at 4 dpi, as described in (Ghosh et al., 2018). 
The relative vertical sheath colonization (RVSC) was 
calculated using the formula: VSC/sheath length × 100. 
The experiment was performed in at least five plants 
using three tillers per plant and repeated three times 
(biological replicates).

qRT–PCR- based expression studies

Total RNA was isolated from infected rice sheaths using 
an RNeasy plant mini kit (Qiagen), and cDNA was syn-
thesized from 2 μg RNA using a High- Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems). The ex-
pression of target genes was quantified by qRT- PCR using 
the gene- specific primer pairs (Table S1) and PowerUp 
SYBR® Green Master Mix (Applied Biosystems), as per 
manufacturer's instructions. 18S rRNA sequence of R. 
solani was used as a reference gene to normalize gene 
expression (Chandan et al., 2023; Kant et al., 2019). The 
fold change was estimated by 2−∆∆Ct method (Chandan 
et al., 2023; Livak & Schmittgen, 2001). To quantify fun-
gal load in the infected samples, relative fold change was 
calculated using 2−ΔCt method, wherein ΔCt is the differ-
ence between Ct values of fungal 18S rRNA and host 
18S rRNA (Ghosh et al., 2021; Kant et al., 2019). In each 
experiment, the sheath of three different rice plants was 
pooled as a single biological replicate and the mean of 
three independent biological replicates was used for cal-
culating standard error.

Yeast complementation assay

Homozygous diploid yeast knockout met13 strain 
(YGL125W; Clone Id:34492) was procured from Yeast 
Knockout Collection (Horizon, USA). The full- length 
Rs_Met13 (~1.3 kb) gene was cloned into a pYES2 
vector (Invitrogen; Thermo Fisher scientific; containing 
GAL1 as a galactose inducible promoter and ampicil-
lin as a selectable bacterial marker) and transformed 
into met13 yeast mutant using yeast transformation kit 
(Yeastmaker Yeast Transformation System 2, Takara 
bio inc.). Positive transformant was selected on SD- Ura 
(MP Biochemicals, USA) plates and the growth of seri-
ally diluted (1:10) culture was analysed on SD- Met (SD 
minus methionine) plates.

dsRNA- mediated silencing of R. 
solani genes

The unique fragments of the target genes (Rs_MET13, 
Rs_MET6, Rs_ArAt and Rs_MsrA) with no off- target in 
R. solani, as well as host (rice) genome, was identified 
using the siFi21 software (http:// labto ols. ipk-  gater sleben. 

de/ ). 300–400 bp region of each of these genes was 
amplified from the cDNA of infected rice, using primers 
that contain a 5′ flanking region of T7 RNA polymerase 
promoter for transcription initiation. Thereafter, an in- vitro 
transcription reaction was set up using one μg of puri-
fied PCR product using MEGAscript T7 Transcription Kit 
(Invitrogen™, Thermo Fisher Scientific Inc.), as per the 
manufacturer's protocol (Francis et al., 2023; Ghosh 
et al., 2021). 30 μg of dsRNA was used to treat sclerotia 
for 12 h, following which the sclerotia were used for infect-
ing rice and growth assay under laboratory conditions. 
The experiment was performed using at least three inde-
pendent biological replicates.

Visualization of reactive oxygen species 
in R. solani mycelia

R. solani was grown on nitrocellulose membrane placed 
on PDA plates for 5 days. The mycelia growing on the 
membrane were placed on sterile glass slides, treated 
with 30 μg of gene- specific dsRNA and incubated for 
12 h under moist conditions. Subsequently, upon H2O2 
treatment (1 and 10 mM) for 3 h, the mycelia were 
stained with H2DCFDA (50 μg/mL; 2′,7′- dichlorodihydrof
luorescein diacetate, Thermo Fisher Scientific Inc.) and 
visualized under GFP filter of Confocal Laser Scanning 
Microscope (TCS- SP8, Leica, Germany) using 63× 
objective. The images were analysed using LAS AF 
Version: 2.6.0 build 7266 software. Fluorescence in-
tensity (calculated across the coloured region of in-
terest [ROI]), signifying the level of intracellular ROS 
accumulation in R. solani mycelia, was measured using 
ImageJ software (https:// imagej. nih. gov/ ij/ ) and repre-
sented as a line graph. The experiment was performed 
using three independent biological replicates and three 
technical replicates.

Statistical analysis

One- way analysis of variance was performed using 
Sigma Plot 11.0 software (SPSS, Chicago, IL, USA), 
using the Student–Newman–Keuls test considering 
p ≤ 0.001, p ≤ 0.01 and p ≤ 0.05 as statistically signifi-
cant. Where applicable, the significance is mentioned 
in the figure legend.

RESULTS

Methionine promotes R. solani growth, 
hyphal branching and infection in rice

We investigated the effect of methionine supplementation 
on R. solani [AG1- IA strain BRS1 (Francis et al., 2023)] 
growth under laboratory conditions and observed that it 
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significantly enhances hyphal branching (Figure S1A), 
radial growth (Figure S1B) and sclerotia formation 
(Figure S1C) on solid media. Methionine also promoted 
fungal growth in liquid media (Figure S1D). Light micros-
copy (Figure 1A) as well as confocal microscopy upon 
WGA–FITC staining (Figure 1B) further reinforced that 
methionine enhances hyphal branching in R. solani.

We also investigated the effect of methionine spray 
during establishment of sheath blight disease in rice. 
The data reflected that disease symptoms (Figure 1C), 
relative vertical sheath colonization (RVSC) index 
(Figure 1D) and pathogen load i.e abundance of R. so-
lani biomass estimated by qRT–PCR (Figure 1E) were 
significantly higher in the methionine- treated rice, com-
pared to the buffer- treated control.

Methionine biosynthesis is important for 
successful infection of R. solani in rice

Methylenetetrahydrofolate reductase (MTHFR) en-
coded by MET12/ MET13 gene is important for methio-
nine biosynthesis in diverse organisms (Figure S2A). 
Genome mining identified a single copy of MET13 (Rs_
MET13), while MET12 is absent in R. solani AG1- IA 
strain BRS1 (Figure S2B). Heterologous expression 
of Rs_MET13 complemented the growth defects of 
Δmet13 yeast mutant on SD (synthetic defined) media 
lacking methionine (Figure S2C).

To investigate further, we silenced the gene using spe-
cific double- stranded RNA (dsRNA) (Francis et al., 2023; 
Ghosh et al., 2021) and observed that the growth of 
Rs_MET13- silenced R. solani was significantly com-
promised on minimal media (MM) plates (Figure 2A,B). 
It failed to produce sclerotia, however, methionine sup-
plementation restored the fungal growth and sclerotia 
formation (Figure 2A–C). qRT- PCR analysis reflected 

that Rs_MET13 is upregulated during R. solani infection 
in rice (Figure 2D). Thereafter, we investigated the effect 
of Rs_MET13- silencing (Figure S3A) during disease es-
tablishment in rice. The disease symptoms (Figure 2E), 
RVSC index (Figure 2F) and pathogen load (Figure 2G) 
were significantly reduced in rice infected with Rs_
MET13- silenced R. solani, compared to those infected 
with buffer- treated ones. Notably, methionine (7 mM) 
treatment restored disease severity in Rs_MET13- 
silenced R. solani- infected rice (Figure 2E–G).

We observed that 5- methyltetrahydropteroyltriglut
amate- homocysteine methyltransferase (Rs_MET6), 
and aromatic amino acid transaminase (Rs_ ArAT), 
genes involved in methionine biosynthesis (Figure S2A) 
were also upregulated during R. solani infection in rice 
(Figure S4A). Silencing of Rs_MET6 (Figure S3B)/ 
Rs_ ArAT (Figure S3C) also compromised growth 
(Figure S4B,C) as well as virulence of R. solani 
(Figure S4D–F). Considering the above, we specu-
late that the upregulation of methionine biosynthesis is 
important for sustaining R. solani growth during host 
colonization. This was supported by our observation 
that treatment with MTX (Methotrexate, 1 mM), a me-
thionine biosynthesis inhibitor (Scott et al., 2020), pre-
vents R. solani infection in rice (Figure 2E–G).

Methionine is important for R. solani to 
manage oxidative stress

The ability to manage an oxidative stress- enriched 
environment is considered to be important for R. 
solani to cause disease in rice (Hu et al., 2021; 
Kumar et al., 2023; Li et al., 2021; Molla et al., 2020). 
We observed that the pathogen is capable of growth 
on 1 mM, but not on 10 mM H2O2- containing MM 
plates (Figures 3A and S5). The growth defects of 

F I G U R E  1  Methionine supplementation promotes hyphal growth and branching in R. solani. Representative images of (A) light 
microscopic analysis showing hyphal growth and branching pattern of R. solani on 1% agar, (B) confocal microscopic analysis of WGA- 
FITC- stained mycelia. (C) Sheath blight disease symptoms in the infected rice plants, at 4 dpi, with and without methionine (Met) treatment. 
(D) The % relative vertical sheath colonization (RVSC) disease index and, (E) qRT- PCR- based quantification of pathogen load in the 
infected plants, at 4 dpi. Pathogen load was quantified as the relative abundance of 18S rRNA of R. solani using 18S rRNA of rice, as 
endogenous control. The graph shows mean values ± standard error of three biological replicates. * and **indicate significant difference at 
p ≤ 0.05 and p ≤ 0.01, respectively.
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F I G U R E  3  Methionine is important for the management of oxidative stress in R. solani. (A) Average radial diameter of mycelial growth 
at 3 dpi and (B) Average sclerotia count at 7 dpi, of buffer- treated and Rs_MET13/ Rs_MsrA- silenced R. solani when grown on minimal 
media plates (MM), with and without H2O2, methionine (Met) and methionine sulfoxide (Met- SO) treatment. The graph shows mean values 
± standard error of three biological replicates, each having four technical replicates. ** and ***indicate significant difference at p ≤ 0.01 and 
p ≤ 0.001, respectively.
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buffer- treated and Rs_MET13- silenced R. solani on 
10 mM H2O2 plates were fully restored upon methio-
nine, but not with methionine sulfoxide (MetSO, an oxi-
dized form of methionine) supplementation (Figures 3A 
and S5). Considering that organisms utilize methionine 
sulfoxide reductases (Msr) to repair oxidized methio-
nine (Hazra et al., 2022; Moskovitz & Smith, 2021), we 
explored whether R. solani utilizes Msr to manage oxi-
dative stress during infection in rice.

Methionine sulfoxide reductase A is 
important for R. solani to manage 
oxidative stress

Most organisms possess two methionine sulfox-
ide reductases, A and B (MsrA/B) that are specific 
to the S-  and R- diastereomers of MetSO, respec-
tively (Hage et al., 2021; Tarrago et al., 2022). We 
observed that R. solani strains, including our labora-
tory strain (AG1- IA strain BRS1), encode MsrA (Rs_
MsrA; Figure S6A) but not MsrB. Rs_MsrA harbours 
Met_Sox_Rdtase_MsrA domain (peptide methionine 
sulfoxide reductase A domain, InterPro: IPR002569) 
(Figure S6B) and conserved catalytic (Cys- 47) as 
well as recycling (Cys- 197) amino acid residues 
that are important for its enzymatic activity (Kim 
et al., 2009) (Figure S6C). Expression analysis re-
flected Rs_MsrA to be upregulated upon 3 h of H2O2 
treatment during growth in MM broth (Figure 4A). 
Also, the gene was upregulated during 3 and 4 dpi 
of infection in rice (Figure 5A), which coincides with 
the necrotrophic phase of R. solani infection (Ghosh 
et al., 2017). In the presence of 1 mM H2O2, although 
the hyphal growth of Rs_MsrA- silenced R. solani 
was comparable to that on MM plates (without H2O2) 
(Figures 3A and S5), its sclerotia formation ability 
was severely compromised (Figure 3B). The growth 
of Rs_MsrA- silenced R. solani was completely pre-
vented on 10 mM H2O2- containing plates, and me-
thionine (but not MetSO) supplementation could 
only partially restore the growth as well as sclerotia 
formation ability (Figures 3A,B and S5). Upon 1 mM 
H2O2 treatment, Rs_MsrA- silenced R. solani had en-
hanced intracellular ROS level (detected by confocal 
microscopic analysis of H2DCFDA stained mycelia), 
compared to buffer- treated control (Figure 4B,C). On 
the other hand, upon 10 mM H2O2 treatment, both 
control as well as Rs_MsrA- silenced R. solani exhib-
ited enhanced ROS accumulation (Figure 4B,C). This 
suggested that Rs_MsrA is required for R. solani to 
manage oxidative stress. We observed that upon 
Rs_MsrA silencing (Figure S3D), disease symptoms 
(Figure 5B), RVSC index (Figure 5C) and pathogen 
load (Figure 5D) were significantly reduced, com-
pared to rice infected with buffer- treated R. solani. 
Moreover, exogenous methionine spray failed to 

rescue Rs_MsrA- silenced R. solani to establish dis-
ease (Figure 5B–D). These analyses emphasize that 
Rs_MsrA is involved in management of oxidative 
stress during infection in rice.

DISCUSSION

Enhanced production of reactive oxygen species 
(ROS), leading to cell death of the infected tissues has 
been one of the prime strategies of various necrotrophic 
pathogens, including Rhizoctonia solani, the causal or-
ganism of sheath blight disease, which is a challenge 
for sustainable rice cultivation (Kant et al., 2019; Kumar 
et al., 2023; Molla et al., 2020). An ability to grow under 
an oxidative stress- enriched environment has been ad-
vantageous for such pathogens to survive under hostile 
environment and to establish disease. However, molec-
ular players that facilitate R. solani to manage oxida-
tive stress remains poorly understood. In this study, we 
present evidence that R. solani upregulates methionine 
biosynthesis and utilizes exogenous methionine (po-
tentially from the host) to sustain growth under oxida-
tive stress- enriched environment that is encountered 
during infection in plants.

We dissected the methionine biosynthetic path-
way and observed that R. solani encodes MTHFR 
(Rs_MET13), a critical regulator in methionine bio-
synthesis (Yan et al., 2013); 5- methyltetrahydropt
eroyltriglutamate- homocysteine methyltransferase 
(Rs_MET6), a cobalamin- independent methionine 
synthase (Shrivastava et al., 2021) and 4- Methylthio-  
2- oxobutyrate transaminase (Rs_ArAT), involved in 
regenerating methionine by salvage pathway (Brault 
& Labbé, 2020; Pirkov et al., 2008). Each of these 
genes was upregulated during infection and silencing 
of them compromised the pathogen to cause sheath 
blight disease in rice. The exogenous spray of a methi-
onine biosynthesis inhibitor, MTX (Scott et al., 2020) 
prevented disease, while methionine treatment en-
hanced disease severity. Although it remains to be 
investigated whether methionine can influence plant- 
associated microbial populations, that otherwise have 
a profuse impact on plant health (Azar et al., 2023; Das 
et al., 2021; Fitzpatrick et al., 2020; Noel et al., 2023; 
Singh, Agrawal, & Bednarek, 2023; Singh, Vaishnav, 
et al., 2023). However, we observed that under axenic 
conditions (during growth in minimal media) methi-
onine treatment facilitated intricate and dense hyphal 
branching that resemble infection cushions, character-
istic structures formed during the necrotrophic phase 
of R. solani infection in rice (Ghosh et al., 2017; Singh 
et al., 2003). On the contrary, defects in methionine 
biosynthesis upon Rs_MET13/ Rs_MET6/ Rs_ArAT 
silencing compromised the growth in minimal media. 
Overall, this suggests that methionine is required 
for supporting R. solani growth and it also acts as a 
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morphogen that induces hyphal branching leading to 
the formation of infection cushions. Generally, rice 
apoplast contains traces of various amino acids, in-
cluding methionine (Saint- Macary et al., 2015; Wang 
et al., 2022) which may not be adequate to sustain 
pathogen growth. Therefore, an ability to upregulate 

its own methionine biosynthetic machineries serves 
as an important strategy for R. solani to colonize rice. 
Moreover, extensive usage of various fertilizers that 
contain methionine to enhance rice productivity, can 
indirectly be responsible for promoting the occurrence 
of sheath blight disease.

F I G U R E  4  Rs_MsrA is required for the management of oxidative stress in R. solani. (A) qRT- PCR based expression analysis of Rs_
MsrA upon H2O2 treatment, during growth of R. solani in minimal media broth (MM), at different time points. The fold change was calculated 
upon H2O2 treatment, with respect to the expression in MM, using 18S rRNA of R. solani as endogenous control. The graph shows mean 
values ± standard error of three biological replicates. (B) Representative confocal micrographs of H2DCFDA (a reactive oxygen species 
indicator)- stained Rs_MsrA- silenced and control (buffer- treated) mycelia, upon H2O2 treatment. (C) Fluorescence intensity (calculated 
across the coloured region of interest [ROI]) quantifying ROS accumulation in the mycelia is drawn as a line graph, wherein blue and pink 
represent control (buffer- treated) and Rs_MsrA- silenced- R. solani, respectively.
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The role of methionine in modulating fungal growth 
and virulence has been reported in other pathogens. 
For example, silencing of Met13 in Magnaporthe ory-
zae (rice blast pathogen) reduced hyphal growth 
and virulence (Yan et al., 2013), while knock- down 
of methionine synthase (MetH) caused fungal- 
stasis in Aspergillus sp. (Frandsen et al., 2010; Scott 
et al., 2020). The mutant of MetR, a transcriptional reg-
ulator of methionine metabolism in Alternaria alternata 
was hypersensitive to ROS and defective in conidia 
formation (Gai et al., 2021). Moreover, additional me-
thionine biosynthetic genes were also involved in pro-
viding protection against oxidative burst and promoting 
A. alternata infection in citrus plants (Gai et al., 2021). 
In corroboration with these studies, we have observed 
that Rs_Met13- silenced R. solani was compromised in 
growth under oxidative stress, which was fully restored 
by external supplementation of methionine, but not with 
MetSO (methionine sulfoxide). It is known that oxidative 
stress causes the oxidation of methionine residues to 
MetSO in various proteins (including antioxidative en-
zymes and regulatory proteins), leading to their inac-
tivation. An antioxidant enzyme, methionine sulfoxide 
reductase (Msr) is used by plants to repair MetSO, back 
to methionine (Hazra et al., 2022; Lim et al., 2011). We 
observed that MsrA homologue in R. solani (Rs_MsrA) 
gets upregulated upon H2O2 treatment and also during 
the necrotrophic phase of infection in rice. Rs_MsrA- 
silenced R. solani was severely defective in causing 
disease and even methionine supplementation failed to 
restore virulence. As Rs_MsrA- silenced R. solani ex-
hibited enhanced ROS accumulation upon H2O2 treat-
ment, we anticipated that Rs_MsrA- mediated repair 
of oxidative damage may be important for R. solani to 
establish disease in rice. It will be important to identify 
R. solani proteins that are subject to MetSO accumula-
tion during oxidative stress and investigate Rs_MsrA- 
mediated repair of such damage. We anticipate that 
similar to plants (Hazra et al., 2022), various antioxidant 
enzymes (such as catalase and ascorbate peroxidase) 
of R. solani may be prone to MetSO- accumulation 
under oxidative stress and Rs_MsrA- mediated repair 
of these enzymes may be important for causing dis-
ease. In recent years, the spray- induced gene silencing 
(SIGS) approach has gained impetus to control plant 
diseases (McRae et al., 2023; Mitter et al., 2017; Qiao 
et al., 2021; Wang & Jin, 2017) and we emphasize that 
a suitable formulation for dsRNA- mediated silencing 
of Rs_MsrA will be an effective approach to control 
sheath blight disease in rice. In addition, Rs_MsrA can 
be explored as a drug target for developing novel anti- 
sheath blight molecules.
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