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Abstract

Although many transcription factors and regulatory proteins have been identified and functionally characterized in light
signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light
responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis
seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing
promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1,
which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box
containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that
SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-
box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the
expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants
suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In
roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to
control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-
mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.
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Introduction

Light plays a pivotal role in the growth and development of

plants starting from seed germination to de-etiolation of seedlings,

pigment synthesis, chloroplast differentiation, flowering and

senescence [1–3]. Light modulates the gene expression primarily

at the transcriptional level [4]. Many of the light-controlled

developments are triggered by changes in the gene expression

through the regulation of transcription of specific genes in defined

tissue types and at various developmental stages [5–10]. Photo-

morphogenesis is one of the well-studied photo-responses in

Arabidopsis. In dark, seedlings undergo skotomorphogenesis (etio-

lation), which is characterized by long hypocotyl, apical hook and

development of proplastids into etioplasts, by contrast light grown

seedlings show a characteristic pattern of development called

photomorphogenesis (de-etiolation), with short hypocotyl, open

cotyledons, well developed chloroplasts and de-repression of light

inducible genes [2–4]. During the switch from skotomorphogen-

esis to photomorphogenesis, transcriptional reprogramming of

a large number of genes occurs in Arabidopsis. Many of the

photosynthetic machinery related genes are expressed during the

shift from dark to light [11], [12]. Genetic, biochemical and

mutational studies of Arabidopsis seedling development have

identified several genes, which function downstream to phyto-

chrome, cryptochrome or both the signaling pathways [2], [4],

[13]. SPA1 functions as a negative regulator in far-red light, and

can suppress phyA phenotype [13], whereas MYC2 is a bHLH

transcription factor that works as a negative regulator in

cryptochrome-mediated blue light signaling [14].

SPA1 belongs to a gene family that includes the other members

such as SPA2, SPA3 and SPA4 [15–17]. Biochemically, SPA1 helps

COP1, a ubiquitin ligase, in the ubiquitylation of target proteins

including HY5, HFR1 and LAF1 [18–22]. Recent studies show

that MYC2 binds to the G-box LRE (light responsive element) of

SPA1 promoter and regulates its expression in a COP1 dependent

manner [23]. SPA1 has been shown to negatively regulate the

expression of light inducible genes such as CAB1, CAB3 and CHS

in dark and light adapted seedlings [22], [24], [25]. Further, SPA1

has been reported to regulate flowering under short day

photoperiod by negatively regulating the expression of FT

transcript levels indirectly by degrading CO protein [26].

Analyses of the promoter sequences of light-inducible genes

have led to the identification of multiple cis-acting regulatory

elements, also known as LREs [27–30]. There are at least four

commonly occurring LREs: G, GATA, GT1 and Z-box, which

have been demonstrated to be essential for the regulation of light-

mediated transcriptional activity [5], [6], [28–30], [31–35].

Recent studies have identified and functionally characterized

several Z-box binding factors (ZBFs) including ZBF1/MYC2,
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ZBF2/GBF1 and ZBF3/CAM7 [14], [23], [36–39]. The ZBFs

have been shown to interact with both the Z- and G-box LREs

present in the light regulated promoters [14], [36], [37]. All these

studies indicate that the Z- and G-box are functionally equivalent

with context to MYC2 mediated gene regulation. In this study, we

have investigated the functional relevance of interaction of MYC2

with the Z- and G-box containing promoters. We have also

investigated the regulation of the Z-box containing promoters by

SPA1 during early seedling development. Our results suggest that

whereas SPA1 strongly represses Z-box containing native CAB1

promoter, it strongly promotes the activity of Z-box containing

synthetic promoter in the roots. Further, MYC2 negatively

regulates the activity of Z- and/or G-box containing synthetic as

well as native promoters in dark and different light qualities in the

seedling stage. However, in adult plants MYC2 differentially

regulates the expression of these promoters in a tissue specific and

promoter context manner. Collectively, our results provide an

insight for the regulation of Z-box LRE containing promoters and

their transcriptional regulation mediated by MYC2 and SPA1.

Materials and Methods

Plant Materials and Growth Conditions
All the promoter-reporter constructs used in this study have

been described in Puente et al. [33], except 4G/NOS101-GUS,

which was generated by genetic crosses between Col-0 and hy5-

215 containing 4G/NOS101-GUS. Selected stable transgenes were

individually introduced into spa1-2 [15] and atmyc2-3/zbf1-1 [14]

mutants by genetic crosses with the wild-type transgenic lines. The

mutant lines homozygous for each transgene were obtained from

the F3 generation for further studies. Putative transgenic plants

were screened histochemically for verification of the expression of

uidA gene [40]. Seeds were surface-sterilized and plated on MS

medium supplemented with 0.8% Bactoagar (Difco). The plates

were then cold-treated at 4uC for 3 days and then transferred to

light chambers maintained at 22uC with the desired wavelength

and intensity of light. For all monochromatic light assays, the

plates were transferred to continuous white light for 3 h to induce

germination. The plates were then transferred to monochromatic

light conditions, incubated at 22uC for six days. For the growth of

Arabidopsis seedlings, the white light intensity used was 90 mmol

m22 sec21. For the color light sources the intensities used (in LED

chamber: Q-beam 3200-A; Quantum Devices, inc., WI 53507,

USA) were, far-red light of 60 mmol m22 sec21, red light of

90 mmol m22 sec21 and blue light of 30 mmol m22 sec21.

GUS Histochemical Staining and Assay
GUS staining (using about 40–50 seedlings in each sample) were

carried out following the same procedure as mentioned [29]. Wild-

type and mutant plants (about 20–30 seedlings each) containing

the same transgene were stained for the same length of time.

Putative transgenic plants were screened histochemically for

verification of the expression of uidA gene. Histochemical assay

for GUS was carried out in the intact tissues (organ or whole

seedlings or free hand cut sections). GUS histochemical assay/

GUS spectrometric assay were carried out using six-day-old

seedlings or 35-day-old adult transgenic plants grown under

required conditions. Tissue from the control and transgenic plants

were submerged in fixation buffer (2% formaldehyde, 50 mM

sodium phosphate (pH 7.0), 0.05% Triton X-100), and vacuum

infiltrated for 4 to 5 min on ice and kept at room temperature for

10 min. The fixation buffer was removed and the material was

washed twice with 50 mM sodium phosphate buffer (pH 7.0) to

remove fixative buffer. The tissue samples were stained using

staining buffer (1.5 mM of X-gluc, 50 mM sodium phosphate

(pH 7.0) and 0.1% Triton X-100) by vacuum infiltrating for 5 to

10 min and then wrapped with aluminium foil and incubated at

37uC overnight in darkness. After staining, tissue was bleached

extensively with 70% ethanol to remove the chlorophyll.

Representative pictures were photographed.

GUS Spectrometric Assay
For GUS spectrometric assays six-day-old seedlings grown in

dark and different wavelengths of light or 35-day-old adult plant-

parts were harvested in microcentrifuge tube and snap freeze in

liquid nitrogen and ground in 1 ml of extraction buffer [50 mM

sodium phosphate (pH 7.0), 5 mM DTT, 1 mM EDTA, 0.1%

sarcosyl, 0.1% Triton X- 100] at 4uC. The suspension was

transferred into a fresh tube and 50 ml of supernatant was added to

the 450 ml of assay buffer (1 mM MUG in extraction buffer) and

incubated in 37uC for 30 min. GUS activity was determined by

fluorimetric assay as described by Jefferson (1987) in which MUG

was used as a substrate. Total protein was quantified using the

Bradford solution and GUS specific activity was recorded as

nanomoles of 4-MU formed per milligram of protein per hr from

the initial velocity of the reaction [40]. Finally the GUS activity

was calculated by comparing the reading to the MU standard and

normalizing to the total protein content. The experiment was done

at least in three biological and three technical replicates.

Results

The Activation of the Z-box Containing Promoters is
Altered in spa1 Mutants
SPA1 has been reported to negatively regulate the expression of

CAB3 and CHS transcript levels in dark grown seedlings in phyA

dependent manner [24], and CAB3, CHS and RBCS expression in

far-red light (FR) adapted seedlings [22], [24]. Also, SPA1

negatively regulates the accumulation of CAB1 in dark and blue

light (BL) adapted seedlings [25]. While many light inducible

promoters are active in spa1 mutants, the role of SPA1 in the

regulation of the Z-box containing promoters remains unknown.

We therefore asked whether the activity of the Z-box containing

promoters is affected in the regulatory pathways defined by spa1

mutation. We used stable transgenic lines containing Z/NOS101-

GUS and CAB1-GUS transgene for this study (Figure 1A). The

basal promoter used in the synthetic promoters has been taken

from the nopaline synthase gene (NOS101), which is from 2101 to

+4, contains the CAAT and the TATA boxes, and is not active in

transgenic plants [33], [41], [42]. Earlier studies have shown that

paired-element, but not the single-element, containing synthetic

promoters can mimic the native light regulated promoters [36]. All

these promoter-reporter constructs (Figure 1A) were individually

introduced into spa1 mutant background by genetic crosses with

the wild type transgenic lines. Then the mutant lines homozygous

for each transgene were generated for further studies.

We monitored the activity of the Z-box containing promoters as

reflected by the GUS reporter enzymatic activity measurements.

The expression of Z-NOS101 promoter was detected in all the

organs including cotyledons, hypocotyl and roots of wild-type

seedlings either grown in dark or at various wavelengths of light

(Figure 1B). In spa1 mutants, however, the expression of the

transgene was mostly confined to cotyledon and hypocotyl with

very little expression, if any, in root (Figure 1B). Quantification of

the GUS activity measurements revealed that the activity of the

promoter was significantly reduced in spa1mutants as compared to

wild-type in dark and at various wavelengths of light, except red

light (RD) (Figure 1D). Collectively, these results indicate that

Regulation of the Z- and G-Box by MYC2 and SPA1
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Figure 1. Effect of spa1 mutation on the regulation of Z/NOS101–GUS and CAB1-GUS promoters under different wavelengths of light.
(A), The consensus DNA sequences of LREs (Z, GATA, GT1 and G-box) derived from different light responsive promoters. (B–C), In each panel, wild-
type (WT) and spa1mutant seedlings carrying respective transgene were shown on the left and right, respectively. GUS staining patterns of 6-day-old
wild-type and spa1 mutant seedlings carrying Z/NOS101-GUS (B) and CAB1-GUS (C) transgene grown in different light (white light (WL), far-red light
(FR), red light (RL), and blue light (BL) or dark (D)) conditions as indicated. (D), GUS activities of six-day-old constant D, WL, RL, FR and BL grown
seedlings carrying Z/NOS101-GUS transgene in wild-type and spa1 mutant backgrounds. Error bars represents SD (n = 3). ** P#0.01 for values
significantly differ from corresponding light conditions in wild-type. (E), GUS activities of six-day-old constant D, WL, RL, FR and BL grown seedlings

Regulation of the Z- and G-Box by MYC2 and SPA1
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SPA1 is required for the optimum activation of the Z-NOS101

synthetic promoter.

To further test these observations, we used native CAB1

minimal promoter (CAB1-GUS) that contains a single Z-box

LRE that is critical for its activation [28], [31], [33], [42]. The

GUS activity staining of CAB1 promoter in wild-type and spa1

mutant backgrounds revealed that the CAB1 promoter activity was

confined to cotyledons at various wavelengths of light (Figure 1C).

Whereas no activity of CAB1 promoter was detceted in wild-type

background, CAB1-GUS expression was clearly visible in spa1

mutants in dark. The quantification of GUS activity revealed that

the promoter activity was stronger in spa1 mutants than the wild-

type seedlings in dark, white light (WL), RL, FR and BL

(Figure 1E).Quantification of GUS activity measurements revealed

that the CAB1 promoter activity was ,2 to 4-fold increased in spa1

in dark, WL, RL and BL, whereas ,5-fold increased in FR as

compared to wild-type (Figure 1E). These results indicate that

SPA1 negatively regulates the activity of CAB1 promoter in dark

and at various wavelengths of light.

MYC2/ZBF1 Negatively Regulates the Activity of the Z-
box Containing Promoters
DNA-protein interaction studies have earlier shown that MYC2

interacts with the Z-box of CAB1 minimal promoter [14]. The

expression of CAB1 is also dramatically elevated in atmyc2 mutant

seedlings in BL and FR [14]. However, it remains unknown

whether the activity of the Z-box containing promoter is directly

affected in the regulatory pathways defined by MYC2 in planta. To

determine how MYC2 is involved in the regulation of Z-box

containing promoters, we used stable transgenic lines containing

Z/NOS101-GUS and CAB1-GUS promoter-reporter constructs

[42]. These promoter-reporter constructs were individually in-

troduced into atmyc2-3 mutants by genetic crosses with the wild

type transgenic lines. Mutant lines homozygous for each transgene

were then generated for further studies. We used 6-day-old

seedlings grown in constant dark or at different wavelengths of

light to monitor the activity of Z/NOS101 and CAB1 promoters.

Similar to wild type, Z/NOS101-GUS transgene was expressed in

various tissues in atmyc2 mutants in D, BL, FR, RL and WL

(Figures 2A). The quantitative GUS activity measurements

revealed that the activity of Z/NOS101 promoter was significantly

increased in atmyc2 background as compared to wild type seedlings

in D, BL and FR (Figure 2C). However, no noticeable difference

in the activity between WT and atmyc2 mutant was observed in RL

and WL (Figure 2C). To further test this observation, we used

native CAB1-GUS promoter-reporter construct. Earlier studies

revealed that in wild type background the expression of CAB1-GUS

was confined to the cotyledons in light, and was not detectable in

any tissue-type of dark grown seedlings [35], [42]. In atmyc2

mutant background, the expression of CAB1-GUS transgene was

although mostly confined to the cotyledons, the level of expression

was dramatically elevated compared to wild-type seedlings in BL,

FR and RL and WL (Figure 2B). Most strikingly, CAB1-GUS

transgene was expressed in the cotyledons of atmyc2 mutant

seedlings even in the darkness (Figure 2B). Quantitative GUS

activity measurements revealed that ,4-fold higher activity of

CAB1 promoter was present in atmyc2 mutants than wild-type

background in dark (Figure 2D). Similarly, ,5 to 7 fold increased

activity of CAB1 promoter was detected in atmyc2 mutants

compared to wild-type seedlings in BL, FR, RL or WL

(Figure 2D). Taken together, these results suggest that MYC2

represses the activity of the Z-box containing promoters at

different wavelengths of light.

MYC2 Strongly Represses Light Mediated Induction of
CAB1 Promoter Activity
As CAB1 promoter was found to be more active in dark and

light grown seedlings in atmyc2 mutant background, we wanted to

examine the light or dark mediated induction of CAB1 promoter

during the transition from light to dark and vice-versa in atmyc2

mutants. We monitored the induction kinetics of CAB1 promoter

in light and dark-adapted seedlings in wild-type and atmyc2 mutant

backgrounds. As shown in Figure 3, when 4-day-old dark grown

seedlings were exposed to WL for 0, 6, 12 and 24 h of WL, the

CAB1 promoter activity was found to be gradually induced with

the increase in exposure to WL. On the other hand, the rate of

induction of CAB1 promoter was drastically increased in atmyc2

mutants (Figure 3A). Next, to examine the activity of the CAB1

promoter during light to dark transition, we transferred 4-day-old

WL grown seedlings to dark for 0, 6, 12 and 24 h. As shown in

Figure 3B, at 6 h although CAB1 promoter activity was reduced in

wild-type background, the activity of the promoter was further

increased in atmyc2 mutant. Whereas at 12 h of dark exposure the

CAB1 promoter activity was found to be similar to constant WL

grown atmyc2mutant seedlings, at 24 h the CAB1 promoter activity

was significantly reduced in comparison to 12 h (Figure 3B).

Collectively, these results demonstrate that MYC2 is a strong

repressor of CAB1 promoter activity.

MYC2/ZBF1 Negatively Regulates the Activity of the G-
box Containing Promoters
The G-box and the Z-box have been shown to be functionally

equivalent with context to MYC2-mediated regulation. DNA-

protein interaction studies of MYC2 with G-box have shown that

MYC2 also interacts with the G-box of RBCS-1A minimal

promoter [14]. However, it is not yet known whether the activity

of the G-box containing promoters is directly affected by

mutations in MYC2. To investigate the regulatory role of MYC2

on G-box containing promoters, we used stable transgenic lines

containing G/NOS101-GUS and G-GATA/NOS101-GUS [28], [33]

promoter-reporter constructs. Both these promoter-reporter con-

structs were individually introduced into atmyc2-3 mutants by

genetic crosses with the wild-type transgenic lines. Mutant lines

homozygous for each transgene were then generated; and 6-day-

old seedlings grown in constant dark D, BL, FR, RL and WL were

used for this study. The expression of G/NOS101-GUS transgene

was mostly detected in cotyledons with lesser extents in hypocotyl

and root of both wild-type and atmyc2 mutants. However, the level

of expression of the transgene was increased in the atmyc2 mutants

in dark and all light conditions tested (Figure 4A). The quantitative

GUS activity measurements revealed that the activity of G/

NOS101 promoter was increased to about ,6 to 8-fold in BL and

WL, and ,2 to 4-fold in D, FR and RL in atmyc2 as compared to

wild-type seedlings (Figure 4C). Collectively, these results suggest

that MYC2 represses the activity of the G/NOS101 promoter in

dark and various wavelengths of light.

Expression of G-GATA/NOS101-GUS transgene was confined to

cotyledons and the intensity of the GUS stain was increased in the

atmyc2 mutants in dark, BL, RL and WL (Figure 4B). The

carrying CAB1-GUS transgene in wild-type and spa1 mutant backgrounds. Error bars represents SD (n = 3). *** P#0.001 for values significantly differ
from corresponding light conditions in wild-type. All the above experiments were performed at least thrice with similar results.
doi:10.1371/journal.pone.0062194.g001

Regulation of the Z- and G-Box by MYC2 and SPA1
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Figure 2. Effect of atmyc2/zbf1 mutation on the regulation of Z-box containing promoters. (A–B), In each panel, wild-type and atmyc2/
zbf1 mutant seedlings carrying respective transgene were shown on the left and right, respectively. GUS staining patterns of six-day-old wild-type
and atmyc2 seedlings carrying Z/NOS101-GUS (A) and CAB1-GUS (B) transgene grown in different light or dark conditions as indicated. (C–D), GUS
activities of wild-type and atmyc2 seedlings carrying Z/NOS101-GUS (C) and CAB1-GUS (D) transgene grown in different light or dark conditions as
indicated. Error bars represents SD (n = 3). ** P#0.01 and *** P#0.001 for values significantly differ from WT in respective growth conditions. All the
above experiments were performed at least thrice with similar results.
doi:10.1371/journal.pone.0062194.g002

Regulation of the Z- and G-Box by MYC2 and SPA1
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quantitative GUS activity measurements revealed that the activity

of G-GATA/NOS101 promoter was significantly increased in dark,

BL, RL and WL with ,2 to 4-fold higher in RL and WL

compared to wild-type (Figure 4D).

MYC2/ZBF1 Differentially Regulates Z- and G-box
Containing Promoters in Tissue Specific Manner
The MYC2 mutant plants display delayed flowering with less

number of lateral roots; and the adult plants have short stature as

compared to corresponding wild-type [14]. To examine the tissue

specific regulatory role of MYC2 in adult plants, we grew wild-type

and atmyc2 mutant transgenic plants in 16 h light/8 h dark cycles.

When the plants started forming inflorescence (35-day-old),

different parts of the plant (stem, leaf, flower and root) were

stained and simultaneously measured the GUS activities. The

GUS staining results revealed that, the Z/NOS101 promoter

activity was increased in leaves and stems (Figure 5A–B), whereas

it was decreased in flower and roots in atmyc2mutants compared to

wild-type plants (Figure 5C–D). The quantitative GUS activity

results show that Z/NOS101 promoter activity was maximum in

roots as compared to other organs of the plants. However, the

activity of Z/NOS101 promoter was strongly suppressed in atmyc2

mutants in roots (Figure 5I). GUS activity measurements also

revealed significant enhancement of the promoter activity in leaf

and stem in atmyc2 plants as compared to wild-type (Figure 5I).

Taken together, these results suggest that, MYC2 plays both

negative (leaf and stem) and positive (flower and root) regulatory

roles for Z/NOS101 promoter activity in the adult plants. We then

extended our study to native CAB1 minimal promoter. The CAB1-

GUS transgene was expressed in leaves and sepals as revealed by

GUS activity staining in wild type and atmyc2 mutants (Figure 5E

and G). Whereas no CAB1 promoter activity was detected in stem

or root of wild-type plants, the branching points of the stems

displayed the activity of the promoter in atmyc2 mutants (Figure 5F

and H). However, no activity was detected in roots of the atmyc2

mutant plants similar to wild type (Figure 5H). The activity of

CAB1 promoter was found to be stronger in atmyc2 mutants as

compared to wild-type plants in leaf, stem and flower (Figure 5J).

These results suggest that MYC2 negatively regulates the activity

of CAB1 promoter in adult plants.

Analysis of G/NOS101 promoter suggests that G/NOS101-GUS

was very weakly expressed in all the parts of the plant tested.

Whereas leaf, stem and flower were more intensely stained in

atmyc2, no difference in the promoter activity (if any) was detected

between wild type and atmyc2 in the roots (Figure 6A–D).

Measurement of GUS activity also showed significant increase in

G/NOS101 activity in atmyc2 mutants than wild type (Figure 6I) in

all the organs tested except in roots. Analysis of G-GATA/NOS101

promoter showed the activity of the promoter in leaf, stem, flower

and root (Figure 6E–H) in wild type and atmyc2 mutants. The

quantification of the GUS activity measurements revealed that

whereas the promoter activity was increased in stem in atmyc2

mutants, it decreased in the flower and roots as compared to wild-

type background (Figure 6J). No significant difference in the

promoter activity was found in the leaf between wild-type and

atmyc2 mutants (Figure 6J).

Discussion

The promoters vary depending upon the associated regulatory

elements, specific sequence motifs and the choice of transcription

start sites. LREs have been investigated in detail with context to

their sequence, copy numbers, combinatorial effects, and also to

some extent about their interacting protein partners. However,

understanding the regulation of individual LRE by genetically and

functionally defined light signaling components still remains

largely unknown. In this study, we have shown the regulation of

one of the least studied LREs, the Z-box, by two downstream

signaling components SPA1 and MYC2, which predominantly

work at two different wavelengths of light. We have demonstrated

how high-irradiance light signals of different wavelengths can

regulate the activity of Z-box containing promoters. We have

observed that repression or induction of the activities of the Z-box

Figure 3. Light-mediated induction of CAB1-GUS in atmyc2
mutatants. (A), Four-day-old dark-grown seedlings carrying CAB1-GUS
transgene were exposed to WL for 0, 6, 12 and 24 h and GUS activities
were measured. Error bars represents SD (n = 3). (B), Four-day-old WL
grown seedlings carrying CAB1-GUS transgene were exposed to dark for
0, 6, 12 and 24 h and GUS activities were measured. Error bars
represents SD (n = 3). All the above experiments were performed at
least thrice with similar results.
doi:10.1371/journal.pone.0062194.g003

Regulation of the Z- and G-Box by MYC2 and SPA1
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Figure 4. Effect of atmyc2/zbf1 mutation on the regulation of G-box containing promoters. (A–B), In each panel, wild-type and atmyc2/
zbf1 mutant seedlings carrying respective transgene were shown on the left and right, respectively. GUS staining patterns of six-day-old wild-type
and atmyc2 seedlings carrying G/NOS101-GUS (A) and G-GATA/NOS101-GUS (B) transgene grown in different light or dark conditions as indicated. (C–
D) GUS activities of wild-type and atmyc2 seedlings carrying G/NOS101-GUS (C) and G-GATA/NOS101-GUS (D) transgene grown in different light or
dark conditions as indicated. Error bars represents SD (n = 3). ** P#0.01 and *** P#0.001 for values significantly differ from WT in respective growth
conditions. All the above experiments were performed at least thrice with similar results.
doi:10.1371/journal.pone.0062194.g004

Regulation of the Z- and G-Box by MYC2 and SPA1
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Figure 5. Effect of atmyc2/zbf1 mutation on the tissue specific expression of Z- box containing promoters in adult plants. In each
panel (A-H) wild-type and atmyc2 seedlings carrying respective transgene are shown on the left and right, respectively. For tissue specific staining, 35-
days-old adult plants grown in 14 h Light/10 h Dark cycle were used for the experiment. (A–D) The GUS staining patterns of Z/NOS-GUS transgene
from leaf (A), stem (B), flower (C) and root (D). (E–H) The GUS staining patterns of CAB1-GUS transgene from leaf (E), stem (F), flower (G), and root (H).
(I–J) GUS activities of 35-day-old wild-type and atmyc2 plants carrying Z/NOS101-GUS (I) and CAB1-GUS (J) transgene. Error bars represents SD (n = 3).
Error bars represents SD (n = 3). ** P#0.01 and *** P#0.001 for values significantly differ from WT in respective tissues. All the above experiments
were performed at least thrice with similar results.
doi:10.1371/journal.pone.0062194.g005

Regulation of the Z- and G-Box by MYC2 and SPA1
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Figure 6. Effect of atmyc2/zbf1 mutation on the tissue specific expression of G- box containing promoters in adult plants. (A–D)The
GUS staining patterns of G/NOS101-GUS transgene from leaves (A), stem (B),flower (C), and root (D). (E–H)The GUS staining patterns of G-GATA/
NOS101-GUS transgene from leaves (E), stem (F), flower (G), and root (H). (I–J) Comparison of GUS activities of 35-day-old wild-type and atmyc2
seedlings carrying G/NOS-GUS (I) and G-GATA/NOS101-GUS (J) transgene. Error bars represents SD (n = 3). Error bars represents SD (n = 3). ** P#0.01
for values significantly differ from WT in respective in respective tissues. All the above experiments were performed at least thrice with similar results.
doi:10.1371/journal.pone.0062194.g006
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containing promoters by light is regulated by proteins primarily

responsive to their respective wavelengths of light.

Promoters are crucial for the controlled expression of genes in

a spatio-temporal and stimulus specific manner. The traditional

mutation and deletion analyses along with new high throughput

technologies have enabled in identifying promoter and its

regulatory elements, and thereby has helped investigating the

mode of gene regulation. However, although quite a few number

of cis-acting elements and the trans-acting factors involved in the

light mediated transcriptional regulation have been reported, only

few (G, GATA, GT1, Z-box) of them have been reported to play

essential roles [28–30], [33], [35], [42]. Of late, the role of Z-box

LRE in the regulation of transcription has been started to be

unravelled in plants [38], [42], [43]. Transcription factors such as

ZBF1/MYC2, ZBF2/GBF1 and ZBF3/CAM7 that specifically

interact with the Z-box have been identified, and the functions of

these transcription factors in light signaling pathways have also

been demonstrated [14], [23], [25], [36], [37]. Interestingly, all

these Z-box binding transcription factors have also found to be

interacting with the G-box LRE. In this study, the Z- or G-box

containing promoters are found to be regulated by ZBF1/MYC2

in somewhat similar fashion. Consistently, earlier studies have

revealed that the Z- and G-box are functionally equivalent with

context to ZBF2/GBF1 [36].

Interestingly, although SPA1 acts as a negative regulator of

photomorphogenic growth, it is found to positively regulate the

activity of Z/NOS101 promoter mainly in the roots. Consistent

with these results SPA1 has been reported to function positively for

the lateral root development [23], [44]. However, SPA1 negatively

regulates the activity of the Z-box containing CAB1 minimal

promoter in dark grown seedlings. Thus, the regulation of the Z-

box by SPA1 shows contrasting effects with context to the

promoter. It is worth mentioning here that although MYC2 is

directly involved in the regulation of the Z- or G-box containing

promoter, SPA1-mediated regulation is likely to be indirect. It has

been shown earlier that the single element containing promoters

may not mimic the regulation of the paired-element containing

promoters or native promoters [28], [33], [42]. At least another

molecule, SHW1, which functions as negative regulator for

hypocotyl growth, but positive regulator for CAB1 expression has

been reported [45].

The Z- and G-box have been shown to be critical for the light-

mediated induction of CAB1 and RBCS-1A promoters, respectively

[31], [32]. The Promoter-reporter analyses in this study demon-

strate that MYC2 is a strong negative regulator of Z- and G-box

containing promoters. The induction kinetics studies of CAB1

native promoter further supports that MYC2 is a strong repressor

of CAB1 in both light and dark grown seedlings, and also during

the transition from dark to light and vice versa. On the other hand,

MYC2 plays both negative and positive regulatory roles in a tissue

specific manner in the adult plants. MYC2 is a strong negative

regulator of Z- and G-box containing promoters irrespective of

promoter type (Z/NOS101, CAB1-GUS, G/NOS101 and G-GATA/

NOS101) in adult plants. However, MYC2 positively regulates Z/

NOS101 and G-GATA/NOS101 promoter in the roots and flowers.

MYC2 apparently does not regulate CAB1 and G/NOS101

promoters in the roots. It should be noted here that although

soil grown plant roots are not exposed to light, the effect of light on

the plant growth including root has well been documented

[49,50].

The differential regulation of Z- and G-box containing

promoters by MYC2 could be envisioned by multiple mode of

actions. Firstly, differential stability and dynamics of the MYC2

protein in different tissue types. Second, the transcription factors

(either positive or negative), which are directly or indirectly under

the control of MYC2, may play crucial role in the differential

regulation of these promoters in different tissue types. Third,

Combinatorial interaction of bHLH and Myb transcription factors

could be one plausible mode of regulation. Very recently, it has

been shown that transcript and protein accumulation of MYC2

are regulated by circadian clock [46]. Also, TIME FOR COFFEE

(TIC), a circadian clock component, acts as negative regulator of

JA signaling pathway by degrading MYC2 protein [46]. Combi-

natorial interaction of bHLH and Myb transcription factors has

been well documented for anthocyanin biosynthesis in maize [47],

[48]. In conclusion, this study demonstrates that in modulation of

photomorphogenesis, SPA1 and MYC2 can mediate the differen-

tial regulation of the Z- and G-box containing promoters (Figure 7)

from early seedling to flowering plants.

Author Contributions

Conceived and designed the experiments: SC SNG JPM VY. Performed

the experiments: SNG JPM VY. Analyzed the data: SC. Contributed

reagents/materials/analysis tools: SC. Wrote the paper: SC SNG JPM.

References

1. McNellis TW, Deng XW (1995) Light control of seedling morphogenetic

pattern. Plant Cell 7: 1749–1761.

2. Chen M, Chory J, Frankhauser C (2004) Light signal transduction in higher

Plants. Ann Rev Genet 38: 87–117.

Figure 7. Mode of regulation of Z- and/or G-box containing promoters by MYC2 and SPA1. MYC2 inhibits the expression of SPA1 [23].
MYC2 negatively regulates the Z- and/or G-box containing promoters irrespective of light quality by directly binding to the promoters. Whereas SPA1
positively regulates the Z-box containing promoter, it negatively regulates the activity of native CAB1 in a wavelength independent manner through
unknown regulatory protein (X) during photomorphogenesis.
doi:10.1371/journal.pone.0062194.g007

Regulation of the Z- and G-Box by MYC2 and SPA1

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e62194



3. Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of

plant development. Trends Cell Biol 21: 664–671.

4. Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in

higher plants. Nature Rev Genet 8: 217–230.

5. Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light

switches for plant genes. Plant Cell 2: 369–378.

6. Manzara T, Carrasco P, Gruissem W (1991) Developmental and organ- specific

changes in promoter DNA-protein interactions in the tomato rbcS gene family.
Plant Cell 3: 1305–1316.

7. Thompson WF, White MJ (1991) Physiological and molecular studies of light-
regulated nuclear genes in higher plants. Annu. Rev. Plant Physiol. Plant Mo1

Biol 42: 423–466.

8. Tobin EM, Kehoe DM (1994) Phytochrome regulated gene expression. Semin
Cell Biol 5: 335–346.

9. Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Ann Rev
Plant Physiol Plant Mol Biol 46: 445–474.

10. Deng XW, Quail PH (1999) Signaling in light-controlled development. Semin
Cell Dev Biol 10: 121–129.

11. Ma L, Li J, Qu L, Hager J, Chen Z, et al. (2001) Light control of Arabidopsis
development entails coordinated regulation of genome expression and cellular

pathways. Plant Cell 13: 2589–2607.

12. Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple

transcription factors genes are early targets of phytochrome A signaling. Proc
Natl Sci USA 98: 9437–9442.

13. Hoecker U, Tepperman JM, Quail PH (1999) SPA1, a WD-repeat protein
specific to phytochrome A signal transduction. Science 284: 496–499.

14. Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A
basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as

a repressor of blue light mediated photomorphogenic growth. Plant Cell 17:

1953–1966.

15. Hoecker U, Yong Xu, Quail PH (1998) SPA1: A New Genetic Locus Involved in

Phytochrome A–Specific Signal Transduction. Plant Cell 10: 19–33.

16. Laubinger S, Hoecker U (2003) The SPA1-like proteins SPA3 and SPA4 repress

photomorphogenesis in the light. Plant J 35: 373–385.

17. Laubinger S, Fittingoff K, Hoecker U (2004) The SPA quartet: A family of WD

repeats proteins with a central role in suppression of photomorphogenesis in
Arabidopsis. Plant Cell 16: 2293–2306.

18. Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization
of HY5 during light-regulated development of Arabidopsis. Nature 405: 462–

466.

19. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, et al. (2003) The COP1-SPA1

interaction defines a critical step in phytochrome A mediated regulation of HY5
activity. Genes Dev 17: 2642–2647.

20. Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, et al. (2003) LAF1
ubiquitination by COP1 controls photomorphogenesis and is stimulated by

SPA1. Nature 423: 995–999.

21. Yang J, Lin R, Sullivan J, Hoecker U, Liu B, et al. (2005a) Light regulates

COP1-mediated degradation of HFR1, a transcription factor essential for light

signaling in Arabidopsis. Plant Cell 17: 804–821.

22. Yang J, Lin R, Hoecker U, Liu B, Xu L, et al. (2005b) Repression of light

signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1
protein accumulation. Plant J 43: 131–141.

23. Gangappa SN, Prasad VB, Chattopadhyay S (2010) Functional interconnection
of MYC2 and SPA1 in the photomorphogenic seedling development of

Arabidopsis. Plant Physiol 154: 1210–1219.

24. Hoecker U, Quail PH (2001) The Phytochrome A-specific Signaling In-

termediate SPA1 Interacts Directly with COP1, a Constitutive Repressor of
Light Signaling in Arabidopsis. J Biol Chem 276: 38173–38178.

25. Mallappa C, Singh A, Ram H, Chattopadhyay S (2008) GBF1, a transcription
factor of blue light signaling in Arabidopsis, is degraded in the dark by

a proteasome-mediated pathway independent of COP1 and SPA1. J Biol Chem

283: 35772–35872.

26. Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, et al. (2006)

Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the
floral inducer CONSTANS to regulate its stability. Development 133: 3213–

3222.

27. Kuhlemeier C, Green PJ, Chua NH (1987) Regulation of gene expression in

higher plants. Ann Rev Plant Physiol 38: 221–257.

28. Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998) Arabidopsis

bZIP protein HY5 directly interacts with light-responsive promoters in
mediating light control of gene expression. Plant Cell 10: 673–683.

29. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, et al. (1998) Molecular

interaction between COP1 and HY5 defines a regulatory switch for light control
of Arabidopsis development. Mol Cell1: 213–222.

30. Arguello-Astorga G, Herrera-Estrella L (1998). Evolution of light-regulated plant
promoters. Annu Rev Plant Physiol Plant Mol Biol 49: 525–555.

31. Ha SB, An G (1988) Identification of upstream regulatory elements involved in

the developmental expression of the Arabidopsis thaliana CAB1 gene. Proc Natl
Acad Sci USA 85: 8017–8021.

32. Donald RGK, Cashmore AR (1990) Mutation of either G-box or I box
sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter.

EMBO J 9: 1717–1726.
33. Puente P, Wei N, Deng XW (1996) Combinational interplay of promoter

elements constitutes the minimal determinants for light and developmental

control of gene expression in Arabidopsis. EMBO J 15: 3732–3743.
34. Millar AJ, Kay SA (1996) Integration of circadian and phototransduction

pathways in the network controlling CAB gene transcription in Arabidopsis.
Proc Natl Acad Sci USA 93: 15491–15496.

35. Chattopadhyay S, Puente P, Deng XW, Wei N (1998b) Combinatorial

interaction of light-responsive elements play a critical role in determining the
response characteristics of light-regulated promoters in Arabidopsis. Plant J 15:

69–77.
36. Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006). A basic leucine zipper

transcription factor, G-box-binding factor 1, regulates blue light-mediated
photomorphogenic growth in Arabidopsis. J. Biol Chem 281: 22190–22199.

37. Kushwaha R, Singh A, Chattopadhyay S (2008) Calmodulin7 plays an

important role as transcriptional regulator in Arabidopsis seedling development.
Plant Cell 20: 1747–1759.

38. Prasad VBR, Gupta N, Nandi A, Chattopadhyay S (2012) HY1 genetically
interacts with GBF1 and regulates the activity of the Z-box containing promoters

in light signaling pathways in Arabidopsis thaliana. Mech Dev 129: 298–307.

39. Singh A, Ram H, Abbas N, Chattopadhyay S (2012) Molecular Interactions of
GBF1 with HY5 and HYH During Light-mediated Seedling Development in

Arabidopsis thaliana. J Biol Chem 287: 25995–26009.
40. Jefferson R, Tony A, Kavanagh A, Bevan MW (1987) GUS fusions: b-

glucuronidase as a sensitive and versatile gene fusion marker in higher plants.
EMBO J 13: 3901–3907.

41. Mitra A, An G (1989) Three distinct regulatory elements comprise the upstream

promoter region of the nopaline synthase gene. Mol General Genet 215: 294–
299.

42. Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, et al. (2002) Light
regulated modulation of Z-box containing promoters by photoreceptors and

downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J

31: 741–753.
43. Lee J, He K, Stolc V, Lee H, Figueroa P, et al. (2007) Analysis of transcription

factor HY5 genomic binding sites revealed its hierarchical role in light regulation
of development. Plant Cell 19: 731–749.

44. Gangappa SN, Chattopadhyay S (2010b) MYC2, a bHLH transcription factor,
modulates the adult phenotype of SPA1. Plant Sig Behavior 5: 1650–1652.

45. Bhatia S, Gangappa SN, Kuswaha R, Kundu S, Chattopadhyay S (2008)

SHORT HYPOCOTYL IN WHITE LIGHT1, a serine-arginine-aspartate-rich
protein in Arabidopsis, acts as a negative regulator of photomorphogenic

growth. Plant Physiol 147: 169–178.
46. Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ (2012) TIME

FOR COFFEE represses accumulation of the MYC2 transcription factor to

provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell
24: 2470–2482.

47. Mol J, Jenkins GI, Schafer E, Weiss D (1996)Signal perception, transduction and
gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci 15:

525–557.

48. Singh KB (1998) Transcriptional Regulation in Plants: The importance of
combinatorial control. Plant Physiol. 118: 1111–1120.

49. Salisbury FJ, Hall A, Grierson CS, Halliday KJ (2007) Phytochrome coordinates
Arabidopsis shoot and root development. Plant J 50: 429–438.

50. Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, et al. (2006)
Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with

increased constitutive auxin signaling. PLoS Genet 2: e202.

Regulation of the Z- and G-Box by MYC2 and SPA1

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e62194


