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Abstract
In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their
wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein-
coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological
feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis
of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to
wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional
expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive
had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The
C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size,
photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type.
Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water
retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was
richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins
of mutant phenotypes and evolutionary importance of these mutants are discussed.

[Kumari R., Sharma V., Sharma V. and Kumar S. 2013 Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless
inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance. J. Genet. 92,
369–394]

Introduction

Phenotypic variation in populations of eukaryotes arises
in part from the superimposition of epigenetic variation
over genetic variation (Kumar et al. 2013). In eukary-
otic individuals, the genetic information is contained in
the sequences of bases in DNA; the epigenetic informa-
tion consists of post-translational modifications in histones
that comprise nucleosomes together with nuclear DNA in
chromatin and methylation of cytosines in DNA. Both his-
tone and cytosine modifications occur by enzymatic mech-
anisms that are genetic and widely conserved (Law and
Jacobsen 2010; Zemach et al. 2010; Deal and Henikoff
2011; He et al. 2011; Lauria and Rossi 2011; Margueron
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and Reinberg 2011). In plants, cytosine methylation occurs
in three contexts in DNA, CG, CHG and CHH (where
H = A, T or C). Present understanding of epigenetic
mechanisms in plants is largely due to analysis in Ara-
bidopsis thaliana, Oryza sativa and Zea mays (Chandler
2010; Garcia-Aguilar et al. 2010; Yan et al. 2010; Bauer and
Fischer 2011; Raissig et al. 2011; Schmitz et al. 2011; Ikeda
2012; Xiao 2012).

In plants, cytosine methylation is established principally
by a small interfering RNA (siRNA) based mechanism
termed RNA directed DNA methylation (RdDM) (Kumar
et al. 2013). In this process, DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2), guided by a complex
of interacting factors and homology of siRNAs to the target
DNA sequences, methylate cytosines in DNA in all of the
above-mentioned three contexts (Law and Jacobsen 2010;
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Haag and Pikaard 2011; He et al. 2011; Kanno and Habu
2011; Wierzbicki et al. 2012). During DNA replication in cell
divisions, the newly synthesized strand is cytosine methy-
lated at the symmetric sites CG and CHG by the METHYL-
TRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3
(CMT3), respectively. The RdDM pathway maintains cyto-
sine methylation in CHH elements (Lindroth et al. 2001; Cao
et al. 2003; Aufsatz et al. 2004; Chan et al. 2005; Woo and
Richards 2008; Saze et al. 2012; Zubko et al. 2012). There
is cooperative interaction between DRM2, CMT3 and MET1
on one hand and specific histone proteins on the other, for the
recruitment of methyltransferases to the DNA sites requiring
de novo or maintenance propagation of methylation marks
(Jackson et al. 2002; Lindroth et al. 2004; Woo et al. 2007;
Woo and Richards 2008; Chodavarapu et al. 2010; Deleris
et al. 2010; Zubko et al. 2012).

Each genetic locus can have many epialleles because only
rarely are all the cytosines sensitive to methylation methyla-
ted altogether. Epialleles of the various genetic loci arise
by gain or loss of methylation at cytosines. The processes
of methylation establishment and maintenance at cytosines
are imperfect (Zhu 2009). Spontaneous deamination of
methylated cytosines leads to base sequence mutations
(Pfeifer 2006; Walsh and Xu 2006; Ossowski et al. 2010).
DNA is also actively demethylated by several demethyl-
ases: REPRESSOR OF SILENCING 1 (ROS1), DEMETER
(DME), DEMETER-LIKE 2 (DML2) and DML3 (Choi et al.
2002; Gong et al. 2002; Penterman et al. 2007; Ortega-
Galisteo et al. 2008). The glycosylase-cum-lyase activity of
the demethylases removes methylcytosine as a free base such
that a gap is created in the phosphodiester backbone which is
filled up by the DNA repair pathway(s) (Bhutani et al. 2011).
An epiallele, once established, is inherited through mitoses
and meioses until changed (Vaughn et al. 2007, Huff and
Zilberman 2012). The cytosine methylation marks over spe-
cific genes may change tissuewise/organwise as per the
developmental programme of the plant, while remaining
intact in the germline stem cells (Sha et al. 2005; Brown
et al. 2008; Lu et al. 2008; Jullien and Berger 2010;
Bauer and Fischer 2011; Schmitz et al. 2011; Jiang and
Kohler 2012). Cytosine methylation patterns over loci also
respond to environmental changes. Exposure to harsh envi-
ronments may lead to widespread changes in the methyl-
ation patterns, affecting the expression of coding-genes
and of transposons (Mirouze et al. 2009; Dowen et al.
2012; Luna et al. 2012; Nosaka et al. 2012; Slaughter
et al. 2012). Loss of methylation from transposons leads
to their activation, thereby transcription from their pro-
moters leads to read out of adjacent genes and transpo-
sitions (Kashkush et al. 2003; Vitte and Bennetzen 2006;
Slotkin and Martienssen 2007; Lisch 2009; Bennetzen and
Zhu 2011; Nosaka et al. 2012). Analysis of correlations
between changes in cytosine methylation patterns of genes
and physiological response by changes in gene expression,
following exposure to stress, is an active area of research in
plants.

In A. thaliana, met1 and drm1 drm2 cmt3 mutants have
been observed to be heritably tolerant to a virulent strains
of Pseudomonas syringae and Hyaloperonospora arabidop-
sidis, much like the F1 progeny of wild-type A. thaliana
exposed to avirulent or virulent strains of P. syringae or
β-aminobutyric acid, suggesting correlation of hypomethyl-
ation with the synthesis of protective proteins, RNAs and
metabolites (Dowen et al. 2012; Luna et al. 2012; Slaughter
et al. 2012). Herbivorous damage in Solanum lycopersicon
and Taraxacum officinale (Verhoeven et al. 2010; Rasmann
et al. 2012), salinity stress in Oryza sativa, Glycine max,
Nicotiana tabacum and Laguncularia racemosa (Wada et al.
2004; Choi and Sano 2007; Lira-Medeiros et al. 2010; Karan
et al. 2012; Song et al. 2012), heavy metal stress in Tri-
folium repens and Linum usitatissimum (Alina et al. 2004)
and low temperature stress in Antirrhinum majus and Z. mays
(Steward et al. 2002; Hashida et al. 2006) also led to wide
hypomethylation together with adaptive response. Contrary-
wise, Pinus silvestris exposed to ionizing radiations
(Kovalchuk et al. 2003) and salt-stressed Mesenbryanthe-
mum crystallinum (Dyachenko et al. 2006) demonstrated
hypermethylation. There has been scarcity of comparisons
between mutants compromised in cytosine methylation
and isogenic wild types stressed biotically or abiotically,
outside of A. thaliana, in relating transgenerational inher-
itance of stress response with changes in DNA methyl-
ation. The present work extends this area of investigation to
C. roseus.

C. roseus (2n = 16; 738 Mbp) of Apocynaceae, a
medicinal-cum-floricultural plant species, has been devel-
oped as a genetic system for the analyses of gene regula-
tory network involved in secondary metabolism (Mishra and
Kumar 2000; van der Heijden et al. 2004; El-Sayed and
Verpoorte 2007; Guirimand et al. 2010; Sharma et al. 2012a,
b). In this species, certain salt-tolerant mutants displayed
conspicuous morphological alterations (Rai et al. 2003;
Kulkarni et al. 2003; Kumar et al. 2007, 2012; Kumari et al.
2010; Chaudhary et al. 2011; Kumar and Sharma 2012).
Three of the mutants of this category were leafless inflores-
cence (lli), evergreen dwarf (egd) and irregular leaf lamina
(ill), wherein the salt tolerance cum altered morphology were
inherited together in Mendelian fashion. On the basis of ear-
lier work on several plant species on transgenerational inher-
itance of epigenetic adaptation to stress conditions, it was
desired to describe their characteristics in some detail. Ques-
tions about the three mutants addressed in the present work
were: whether they were (i) deficient in DNA methylation;
(ii) altered in the expression of genes involved in the perfor-
mance of diverse plant functions; and (iii) possessing other
phenotypes. The lli, egd and ill single mutants and lli egd,
lli ill and egd ill double mutants were compared with wild
type with respect to DNA methylation at repeat sequences,
expression of 126 genes and phenotypes for 48 traits. It
was found that mutants had highly pleiotropic phenotypes,
demonstrated differential patterns of gene expression and
were relatively demethylated in DNA.
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Materials and methods

Plant material

The homozygous genotypes egd (evergreen dwarf), lli
(leafless inflorescence) and ill (irregular leaf lamina) are
respectively ethyl methanesulphonate and nitrosomethylurea-
induced Mendelian recessive mutants of the wild type (WT)
medicinal cultivar ‘Nirmal’ of C. roseus (figure 1). The
mutants egd and lli are respectively the gsr1 and gsr8
mutants (gsr = glycophytic salinity response (Rai et al. 2003;
Kumar et al. 2007)); these were isolated as M2 seedlings that
germinated in the presence of 250 mM NaCl. At 250 mM
NaCl concentration, in a test none out of 3 × 103 seeds of
‘Nirmal’ had germinated. The mutants gsr1 and gsr8 were
renamed after their most conspicuous morphological pheno-
type (Kumari et al. 2010). The ill mutant was isolated as
a leaf morphology variant (Kulkarni et al. 1999, 2003) and
subsequently found to share the gsr phenotype with egd and
lli mutants. The details of procedures for the isolation of gsr
mutants on the basis of their salt tolerance phenotype and
testing of their drought tolerance are described in Rai et al.
(2003). The double mutants egd lli, egd ill and lli ill were
isolated on the basis of their respective evergreen dwarf-
cum-leafless inflorescence, evergreen dwarf-cum-irregular
leaf lamina and leafless inflorescence-cum-irregular leaf lam-
ina morphologies from among the F2 generation segregants
in lli × egd, egd × ill and lli × ill crosses. The single

and double mutants have been maintained by selfing for
several generations before their characterization in the
present experiments.

Seedlings of WT ‘Nirmal’ and each of the three single
and three double mutants were raised in nursery and subse-
quently planted in field in a completely randomized design
with five replications (n = 5). Nursery, field planting and
crop husbandry procedures were the same as described ear-
lier (Mishra et al. 2001; Singh et al. 2008; Chaudhary et al.
2011; Sharma et al. 2012a, b). Field experiments were laid
in 2008, 2009 and 2010 in the same design and in the
same plot at the NIPGR’s experimental farm at New Delhi,
India. There were 10 plants per replication. All plants were
labelled. Three randomly labelled plants/replication from
the 2009 experiment served as resource for the leaf mate-
rial for the DNA and gene expression analyses. For such
analysis, young leaves borne at shoot tips were harvested,
frozen and used immediately/stored at −80◦C as per the
experimental requirements. Among the remaining plants of
2009 season and from 2008 and 2010 field experiment, three
plants per genotype per replication were sampled for biomass
measurements and analysis of K+ and Na+ contents. The
yearwise observations from field experiments were averaged
replication-wise. The remainder of the plants were sampled
for organ size measurements.

Genotypes were also grown in clay pots of 75-cm diam-
eter in the years 2009 and 2010. Nursery and planting
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Figure 1. Wild type and salt-tolerant cum morphological mutants of Mendelian inher-
itance in the C. roseus cv Nirmal genetic background. (a), Wild type (WT, cv Nirmal);
(b), leafless inflorescence (lli); (c), evergreen dwarf (egd); (d), irregular leaf lamina (ill);
(e), a fruiting primary stem of WT; (f), a fruiting primary stem bearing secondary and
tertiary branches of lli; (g), a stem of ill in which the irregular leaf lamina feature is
clearly visualized from sides; (h), front views of a wild type (left) and a ill leaf (right).
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procedures were same as in the field. Number of pots per
replication per genotype was 10. Each pot was transplanted
with four seedlings. Number of replications varied as per the
experiment. The labelled pots were kept experiment-wise in
a field plot randomly and were husbanded on alternate days
as per the requirements of the experiment. The leaf fresh
weight, photosynthetic and leaf histological measurements,
water, trehalose, proline, chlorophyll and alkaloid content
assays and determinations of time for 50% water loss were
conducted on pot grown plants.

Samples were taken from flowering plants that had
attained the age of 18–21 weeks from the time of seed
germination.

Procedure for Southern blot hybridization

Total genomic DNA was isolated from 500 mg fresh leaves
of C. roseus using CTAB (cetyl-trimethyl-ammonium bro-
mide) method (Saghai-Maroof et al. 1984). The leaf pow-
der was incubated with extraction buffer (100 mM Tris-
Cl, 25 mM EDTA, 1.5 M NaCl, 2.5% CTAB, 1% poly
vinyl pyrrolidone and 0.2% β-mercaptoethanol) at 60◦C for
2 h and this treatment was followed by chloroform:isoamyl
purification. After ethanol precipitation, DNA was dissolved
in 0.1 M Tris-EDTA buffer (0.1 M Tris-Cl and 0.01 M EDTA,
pH 8.0) and checked on 0.8% agarose with ethidium bromide
staining and quantified spectrophotometrically. Ten micro-
gram of genomic DNA was digested with 5 μg−1 DNA units
MspI (New England Biolab, Beverly, USA) enzyme (Wada
et al. 2004) and the digest was size fractionated by elec-
trophoresis on 0.8% agarose gel. The gel was sequentially
treated with each of depurination, denaturation and neutral-
ization buffers (pH 7.4) (Sambrook et al. 1989) at room tem-
perature for 10, 30 and 30 min, respectively. The gel was sub-
jected to alkali method of transfer to Hybond N+ membranes
(Amersham Pharmacia Biotech, Sweden). DNA present on
the membrane was hybridized with [α-32P-dCTP]-labelled
DNA probes (20 μCi/μL; Megaprime DNA labelling sys-
tem, Amersham Pharmacia Biotech). The membrane was
washed under high-stringency condition at 65◦C, autoradio-
graphed, incubated at −80◦C for 5–6 days and the image was
taken with Gel Doc system, Los Angeles, USA. To study
methylation in ribosomal DNA, 18S rRNA probe was syn-
thesized by using the 5′-GGCTTCGGGATCGGAGTAAT-
3′ (forward) and 5′-CAAATTAAGCCGCAGGCTCC-3′
(reverse) primers (primers had been designed after http://
www.ncbi.nlm.nih.gov/tools/primer-blast/). The 294 bp
PCR product from 18S rDNA was purified and used as
probe. For 5S rDNA the pUC18 plasmid carrying the 5S
rRNA gene of Lupinus luteus was deployed as the probe
(Rafalski et al. 1982). The centomeric region was amplified
using 5′-CATATTCGACTCCAAAACACTAACC-3′ (for-
ward) and 5′-AGAAGATACAAAGCCAAAGACTCAT-3′
(reverse) primers (Nagaki et al. 2003) to obtain a 200 bp
probe. Southern blot hybridization experiment was repeated
twice.

Gene expression analysis

Total RNA was isolated from leaves using RNeasy plant mini
kit (Qiagen, Hilden, Germany). The quality of total RNA
was checked on 1.5% denaturing formaldehyde agarose gel
(Dutta et al. 2005; Tan 2010). The miRNA was isolated with
mirVanaTM isolation kit (Ambion, USA). The first strand
cDNA was synthesized with 2 μg of each total RNA and
miRNA using cDNA synthesis kit (Fermentas Life Sciences,
Massachusetts, USA). miRNA was subjected to poly(A)
tailing kit (Ambion, USA) before cDNA synthesis (Zhu
et al. 2010). The cDNA from total RNA and microRNA
were equalized with ACTIN and UBIQUITIN as control
genes. Primers for expression analysis of hypomethylated
genes in C. roseus were designed using Pimer-Blast (http://
www.ncbi.nlm.nih.gov/tools/primer-blast/) (Ratcliffe et al.
2003; Tan 2010). The primer sequences used for miRNA
amplification were described in Kim and Sung (2010) and
Zhu et al. (2010). The PCR cycle conditions for semiquanti-
tative RT-PCR were 95◦C for 3 min, 94◦C 30 s, 52◦C 30 s,
72◦C 1 min (35×) and 72◦C for 10 min. The amplification
conditions (tm) were varied with primers. After amplifica-
tion, the PCR product was separated on 1.5% agarose gel
with ethidium bromide stain. The image and the intensity of
the PCR products in the gel were taken using gel documenta-
tion system (Alpha Imager, San Legendra, USA) and quanti-
fied by use of image acquisition and analysis software (UVP,
Cambridge, UK). The list of primer sequences is given in
table 1 in electronic supplementary material at http://www.
ias.ac.in/jgenet/. This table also provides PCR conditions
optimized genewise for the annealing temperature and num-
ber of amplification cycles to obtain PCR products in high
intensities.

Microscopy and photography

To estimate their dimensions, the cells, tissues and organs, in
sections or whole mounts, were examined and photographed
microscopically at 4×, 10× and/or 40× magnification(s).
Simultaneously, pictures of a micrometre were also taken.
The microscope used was Nikon E100 and the digital cam-
era attached to microscope was Nikon 8400. The pictures of
cells/tissues/organs were printed together with those of the
micrometre on mm2 graph paper. The dimensions were deter-
mined by counting the squares calibrated by the micrometre.

Germination tests

Ten seeds per replication were germinated on filter paper irri-
gated with 100 mM NaCl in a Petri dish at 37◦C. Experiment
was replicated thrice (n = 3). After three weeks, seedlings
were weighed replication-wise.

Biomass measurements

Field grown plants were excavated along with their root sys-
tem. From the plants sampled from a replication, roots, stems
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and leaves (+ flowers and fruits) were separated and placed
in separate paper bags. The material was dried (at 80◦C for
30 min, at 37◦C for two days and room temperature for
several weeks) and weighed organ-wise.

Organ biomass and dimension measurements

Fresh weight of a leaf was determined by weighing 25
leaves/replications taken from pot experiment. The area of
the leaf, lamina and length of petiole were measured with the
help of scanned pictures taken on mm2 graph paper. Flower
pedicel, whole flowers, sepals, petals, corolla tubes, gynoe-
cium styles, ovaries were traced on mm2 graph paper to esti-
mate their sizes. The sample size was five leaves of flowers
per replication from field grown plants. The microscopic pic-
tures of dry seeds were used to measure the area of the seeds.
Seeds were taken from a pot experiment. Sample size was
five seeds/replication.

Time period taken for 50% loss of water (h)

To determine the leaf dryness rate, 15 leaves (fresh) were
taken and their initial weight was measured. They were
allowed to dry at the room temperature and their weight was
measured every 3 h. The process of drying was done until the
weight of the leaf sample became constant. The two parame-
ters measured were time required for 50% reduction of water
content and total water content.

Determination of leaf water content in normal and stressed plants

There were three treatments per genotype–normal irriga-
tion, three weeks withdrawal of irrigation and four weeks
irrigation with 100 mM NaCl (saline) water. Twenty-five
fresh leaves per replication per treatment per genotype were
allowed to dry at 80◦C for 30 min followed by 30◦C until
weight became constant.

Histological measurements

To study the epidermis, leaves fixed in 70% alcohol were
incubated in phenol:lactic acid:glycerol:water::1:1:1:1 mix-
ture for 15 min at 90◦C, transferred to 20% glycerol and
examined microscopically with safranin staining. Pictures
taken at different magnifications were used for obtaining the
area of the pavement cell and number of stomata per unit
area. The leaves were sectioned transversely and safranin
stained sections were photographed and pictures were used
to estimate the mesophyll parenchyma cell dimensions and
adaxial–abaxial thickness. Photographs of micrometre and of
epidermis and sections taken at different magnifications were
printed on graph paper to estimate the size of cells and tis-
sues and frequencies of stomata etc. (Sharma et al. 2012a).
Leaf samples were taken from pot experiments.

Methodology of elemental analysis

Leaf sample was dried at 70◦C for 48 h and ground in Willey
mill, and 0.25 g was digested in concentrated H2SO4 + H2O2
on block digester under controlled temperature (till the plant
material + acid became colourless). The digest was cooled
and diluted to a volume of 100 mL. The acid digest was sub-
jected to flame photometer (Systronics Model 128) against
known standard of Na and K (Piper 1967) for the Na+ and
K+ content measurements.

Measurement of photosynthetic rate and chlorophyll contents in
leaves

Photosynthesis in individual leaves was studied using
GFS-3000 portable gas exchange fluorescence system
(Heinz-Walz, Effeltrich, Germany). Photosynthetic rate was
expressed in terms of μmol of CO2 utilized per metre square
of leaf area per second (μmol.m−2.s−1) and total photosyn-
thesis in leaves as μmol CO2 utilized per second (μmol.s−1).
The latter was calculated by multiplying the rate with leaf
area (Sharma et al. 2012b). Chlorophyll ‘a’, chlorophyll ‘b’
and total chlorophyll contents in the leaves were estimated
using the Arnon (1949) method.

Estimation of alkaloid, proline and trehalose contents

Alkaloids present in the C. roseus were extracted organ-wise
and quantified by the method described by Singh et al. (2004,
2008). Proline and trehalose contents in leaf samples were
determined respectively by the methods described by Bates
et al. (1973) and Mahmud et al. (2009). Leaf samples were
resourced from separate pot experiments.

Statistical procedures

Statistical analyses were carried out by various modules
of the software SPSS 16.0 (SPSS, Chicago, USA). Anal-
ysis of variance (ANOVA) was used to reveal the genetic
and genotype × environment components of phenotypic
variation. Associations between traits were examined by
Pearson’s phenotypic correlation analysis.

Results

Correlation between morphological phenotype and salt tolerance
in lli, egd, ill, lli egd, lli ill and egd ill mutants

The principal morphological alterations recorded in the lli
mutants are extensive terminal branching and absence of
leaves from flowering nodes. These are dwarfness, evergreen
foliage and late flowering habit in the egd mutant. The ill
mutant demonstrates many undulations in leaf lamina seen
from the sides of margin. The seeds of all the three mutants
are known to germinate in the presence of up to 250 mM
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NaCl. The double mutants were recovered as segregants in
F2 generation from three two-way crosses. Seven plants of lli
and egd morphologies were identified among 103 F2 progeny
plants of the lli × egd cross. Among 88 F2 plants from the
lli × ill cross, five plants possessing both lli and ill morpholo-
gies were isolated. Four plants of ill and egd morphologies
became available from among 72 F2 plants of the egd × ill
cross. All the 16 double mutant plants were selfed to obtain
F3 seeds. A part of F3 seeds of each double mutant isolate
was tested for germination in the presence of 250 mM NaCl.
Unlike the wild type, and like lli, egd and ill, all the dou-
ble mutants proved to be salt tolerant. These results demon-
strated correlation between the morphological phenotype and
salinity tolerance phenotype in lli, egd, ill and lli egd, egd
ill and lli ill segregants isolated from intermutant crosses.
One representative double mutant plant isolated from each
cross was carried forward via selfing over subsequent gen-
erations for further characterization. Observations are pre-
sented in table 1 on fresh weight of seedlings germinated in
the presence of 100 mM NaCl in Petri dishes under room
temperature in dark and K+/Na+ ratios in leaves of field
grown plants, in wild type and six mutants. It will be seen
that mutant leaves generally had higher K+/Na+ ratios than
wild type. The susceptibility of wild-type seeds to salt stress
led to poor growth (lower mass) in their seedlings as com-
pared to mutants. These observations showed quantitative
differences in response to salt in wild type and mutants. The
correlation between morphological alteration and salinity tol-
erance in each of the lli, egd and ill mutants could be either
due to one or two lesions that are very closely linked to each
other, distinct in each mutant.

Reduction of genomic DNA methylation in mutants

Salt tolerance has been earlier reported to be associated with
genome-wide DNA demethylation in several plant species.
To test whether C. roseus morphological-cum-salinity toler-
ant mutants were also deficient in cytosine methylation, MspI
digested DNAs of each of the mutants and wild type were
probed with sequences from 5S and 18S rDNA and cen-
tromeric DNA using Southern blot analysis. It will be seen
from figure 2 that the mutants differed from wild type in
intensity and diversity of MspI sensitive sites. The mutants
had greater distribution of MspI sensitive sites presumably
due to loss of methylation from cytosines at these sites dis-
tributed over chromosomes. Both centromere and rDNAs
represent major locations of repeat sequences in chromo-
somes. Thus, the results suggest deficiency of methylated
cytosines at global level in the genomes of the single and
double mutants.

Comparative gene expression profiles of mutants and wild type

RT-PCR was used to estimate transcript levels for a total of
126 genes in the leaves of seven genotypes. Among the genes,
whose expression levels were studied, five were known to
be stress response genes, seven were microRNA genes,
17 concerned chromatin modelling and cytosine methylation,
82 were known to participate in the plant development pro-
cesses and 15 determined the terpenoid indole alkaloid
metabolism. The objective of gene expression profiling was
to find out whether the lli, egd and ill mutations affected
gene expression in positive or negative direction (figure 3).

Table 1. Salinity tolerance characteristics of the wild type, lli, egd, ill, lli egd,
lli ill and egd ill homozygous genotypes of common genetic background in C.
roseus.

Fresh weight of seedlings
germinated in the K+/Na+ ratio

presence of 100 mM in the leaves of
Genotype NaCl in Petri dishes field grown plants

WT 0.20 ± 0.07a 2.2 ± 0.3a

lli 10.32 ± 1.78b 4.2 ± 0.8b

egd 8.60 ± 0.78b 3.7 ± 0.6ab

ill 9.54 ± 0.76b 3.7 ± 0.8ab

lli egd 9.52 ± 0.53b 5.5 ± 0.4b

lli ill 9.44 ± 0.53b 4.9 ± 0.1b

egd ill 9.72 ± 0.40b 4.8 ± 0.4b

Mean of all genotypes 8.19 ± 1.35 4.2 ± 0.4
F value 17.5** 4.2**
CD 5% 2.47 1.54
CD 1% 3.33 2.08

** Significant at 1% probability level.
a, bFor a character, the values that do not have the same letter as superscript are
different.
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Figure 2. Loss of cytosine methylation at centromere-, 5S- and 18S-rDNA repeat sequences in lli, egd
and ill mutants in C. roseus. MspI digested DNAs of wild type, three single and three double mutants,
were hybridized to each of 5S and 18S rDNA and centromeric DNA probes.

For each of the gene surveyed, the transcript level observed
for the wild type was taken as one and the transcript lev-
els in mutants were expressed in relation to this value.
In all, 85 genes were observed to be upregulated and 41
genes downregulated in mutants. These observations are pre-
sented in tables 2 and 3. In general, mutants demonstrated

Figure 3. Gene expression levels examined by semiquantitative
RT-PCR. Some representative results with upregulated and down-
regulated genes are shown. ACTIN served as the control gene in
these experiments. Full names of the genes are given in tables 2
and 3.

epistasis over each other in gene expression. Interestingly, all
five genes known to respond to abiotic stress were observed
to have upregulated expression in mutants (table 2). These
genes were orthologs of the COR15A, DREB1A, and 2A,
OSMOTIN and RD29A genes of A. thaliana. Nine genes were
nearly five-fold or more upregulated in mutant genotypes:
DREB1A, RD29A, miR171, miR159, REF6, ORCA3, LEC2,
PRF and SLS counterparts of A. thaliana in C. roseus. The
C. roseus orthologues of DRM2, RDR2 and DRD1 genes
of A. thaliana were found to be downregulated in mutants
(table 3).

Pleiotropic effects of lli, egd and ill mutations on quantitative traits

Morphological changes in each of the lli, egd and ill mutants,
extensive loss of cytosine methylation sites and associ-
ated large differences in the expression of genes relating to
diverse functions, indicated that the mutants may pleiotrop-
ically affect a wide variety of traits. Therefore, observa-
tions were recorded on 48 traits. To reveal the effect of
lli, egd and ill mutations on a trait, the observation on the
seven genotypes (wild type, three mutants and three double
mutants) were compared genotype-wise as well as mutation-
wise (effect of say the mutation lli on a parameter = mea-
surements on lli + lli egd + lli ill/3). ANOVA was applied
to observations on each trait for deducing the significance
of observed effects. For the purposes of ease of presenta-
tion, the traits seemingly related to each other were grouped
together.
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Size of vegetative organs: Observations recorded on biomass
of roots, stems, leaves and entire plant, and one leaf and
root/shoot and stem/leaf ratios in seven genotypes are sum-
marized in table 4. In terms of five of seven parameters of
plant vegetative growth studied, the mutants and wild type
fell into the following order: lli > wild type > ill > egd.
The mutations affected the root/shoot ratio similarly, which
was higher in lli, egd and ill genotypes than in the wild type.
According to stem/leaf ratio, the genotypes fell in the fol-
lowing order: lli > egd > ill and wild type. On the whole,
the lli mutation increased the vegetative growth and egd
and ill mutations were some what detrimental to vegetative
growth. The egd ill combination was most detrimental to
tissue growth.

Cell sizes and stomata frequency in leaf tissues: It will be seen
from table 5 that the adaxial–abaxial thickness was sim-
ilar in the wild type and mutants. The differences in the
sizes of mesophyll parenchyma cells between mutant and
wild type genotypes were marginal—egd:ill:wild type and
lli::1:0.84:0.73. The egd and ill mutations increased the size
of pavement cells up to 23% and 83%, respectively. There
were more stomata in epidermal tissues of mutants as com-
pared to wild type: ill > egd > lli > wild type. Each of
the ill and egd mutations increased the stomata frequency by
30–50%.

Photosynthesis traits: Total chlorophyll, chlorophyll a and
chlorophyll b contents in leaves were respectively 25, 40 and
10% higher in wild type than in mutants which had sim-
ilar chlorophyll contents (table 6). According to total leaf
photosynthesis, the genotypes could be arranged in the fol-
lowing decreasing order: egd (1.0) > lli (0.87) > wild type
(0.76) > ill (0.58). Ten per cent increase in egd and 10%
decrease in ill in photosynthetic rate as compared to wild type
were significant. The observations indicated complexity of
the photosynthetic traits.

Organ dimensions: The observations summarized in table 7
showed that the lamina area-wise, leaves were smaller in
mutants: wild type (1.0) > egd (0.97) > lli (0.87) > ill (0.79).
However, the mutants differed in leaf petiole length in rela-
tion to the wild type: lli (1.0) > egd (0.90) > wild type (0.89)
> ill (0.69). The flower pedicels were of larger size in egd
and ill mutants than in wild type. The mutants bore flowers
of smaller diameter, in which petals, corolla tube and style
of gynoecium were all smaller than in wild type. The length
of pods and number of seeds in a pod was also smaller in
mutants than in wild type. Contrastingly seeds were of larger
size in mutant genotypes: lli (1.0) > ill (0.89) > egd (0.83) >

wild type (0.81).

Stress related traits: The parameters of mutant genotypes
in respect of the stress-indicative traits demonstrated their
innate tolerance towards salinity and drought stresses
(table 8). Whereas, the water content in leaves of the mutants
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was 12% lower on average basis under irrigation water
abundance conditions, it was about 70% higher under arti-
ficially created drought conditions and following irrigation
with saline water. According to drought and salinity toler-
ance, the mutants fell in the following order: egd (1.0) > lli
(0.92) > ill (0.83). The wild-type leaves lost their water about
24% faster than the average rate of water loss from the leaves
of mutant genotypes. This parameter suggested relative stress
tolerance among the mutant genotypes was: egd > lli > ill.
The mutants accumulated osmoprotectants in their leaves in
higher concentrations as compared to wild type. There was
36% more proline and 91% more trehalose than in wild-type
leaves. The mutant leaves accumulated 25% less Na+ and
44% higher K+ than the leaves of wild type.

Terpenoid indole alkaloid (TIA) accumulation: The TIA accu-
mulation was relatively less in the mutant genotypes as
compared to wild type, except that ill genotypes accumu-
lated 50% more vindoline in leaves and 37% more vinblas-
tine + vincristine in leaves as compared to wild type leaves
(table 9).

Effect of salt on leaf histology

Leaves taken from plants of the seven genotypes that had
received normal irrigation and from those that were irrigated
with saline water were sectioned transversely and their sec-
tions stained with safranin were examined microscopically.
The observations are presented in table 10. It will be seen that
treatment with salt, resulted in reduction of sizes of both pal-
isade and spongy mesophyll parenchyma cells. Salt treatment
produced similar effect on the wild type and mutant meso-
phyll parenchyma. The adaxial–abaxial thickness of leaves
was also not reduced by salt treatment. It was similar in all
the genotypes.

Discussion

Pleiotropy in leafless inflorescence (lli), evergreen dwarf (egd)
and irregular leaf lamina (ill) mutants

The specific morphologies after which the lli, egd and ill
mutants were named were recombinable such that double
mutants that possessed the name-wise characteristics of the
single mutants were identifiable in the segregating popula-
tions. With the availability of double mutants, expression of
such mutation could be studied in the background of each
of the other two mutations. The lli and egd mutants were
isolated as salt-tolerant seedlings and their adult plants were
observed to have distinctive morphologies. The ill mutant
was isolated as a morphological mutant and its seedlings
were subsequently noted to be salt tolerant. The single and
double mutants were found to be similarly salt tolerant at
their seedling stage. Their gene expression patterns were also
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Morphological cum salt-tolerant DNA hypomethylated mutants in Catharanthus roseus

Table 10. Effect of salinity on the sizes of leaf mesophyll parenchyma cells.

Area of spongy Area of palisade Adaxial–abaxial thickness
Genotype Treatment cell (μm2) cell (μm2) of lamina next to midrib

WT Control 490.7 ± 51.2 333.5 ± 50.3 161.4 ± 10.5
Salt 197.6 ± 0.10 247.1 ± 12.7 158.3 ± 2.0

lli Control 508.9 ± 32.9 415.3 ± 31.5 172.3 ± 21.4
Salt 182.9 ± 14.5 254.4 ± 5.4 134.8 ± 25.5

egd Control 560.2 ± 18.4 429.9 ± 46.2 161.4 ± 10.5
Salt 231.8 ± 34.3 293.4 ± 33.7 150.4 ± 9.8

ill Control 474.8 ± 67.1 383.5 ± 0.2 150.4 ± 0.4
Salt 175.7 ± 21.9 272.7 ± 12.9 259.8 ± 99.6

lli egd Control 546.8 ± 5.0 373.3 ± 10.4 122.3 ± 28.5
Salt 202.5 ± 5.0 255.4 ± 4.3 148.9 ± 11.4

lli ill Control 378.3 ± 163.5 385.5 ± 1.7 137.9 ± 12.9
Salt 189.1 ± 8.4 260.5 ± 0.7 127.0 ± 33.3

egd ill Control 868.1 ± 326.3 365.2 ± 18.5 150.4 ± 0.4
Salt 237.9 ± 40.4 234.9 ± 24.9 142.6 ± 17.6

‘F’ for genotypes 1.34 1.75 1.09
‘F’ for treatments 37.2** 84.91** 0.29
‘F’ for interaction 0.8 0.4 1.1
CD for genotypes 5% P 228.1 54.4 70.6
CD for salt 5% P 121.9 29.1 37.7
CD for interaction 5% P 322.6 76.9 99.8

**Significant at 1% level of probability.

largely similar. Their pleiotropy shared several other fea-
tures. In comparison to the wild type, their average expres-
sion over 48 traits revealed the following as their pleiotropy:
slower rate of water loss, higher content of water under
drought and saline conditions and lower water content under
conditions of abundant irrigation water; higher frequency
of stomata on epidermis, bigger palisade parenchyma cells,
smaller leaves, higher total photosynthesis in leaves and
chlorophyll in lower concentration; lower content of Na+
and higher contents of K+, proline, trehalose and terpenoid
indole alkaloids; smaller flower organs, smaller pods and
larger seeds; and higher root/shoot ratio. Lower water loss
despite abundance of stomata in mutants seems to indicate
a mechanism in them for the negative control of stomata
opening. Each mutation was associated with some distinc-
tive features in addition to their name-wise unique morphol-
ogy. The lli mutation was associated with largest biomass in
stems, leaves and root, seeds of biggest size and very high
content of trehalose. The egd mutation bestowed the plants
with highest rates of total photosynthesis in leaves, and pave-
ment cells and spongy mesophyll parenchyma cells of largest
sizes; and highest content of water and least rate of loss of
water from leaves. The ill mutation led to highest increase in
vindoline and vincristine and vinblastine contents in leaves
and catharanthine content in roots, least content of chloro-
phylls and photosynthetic rate in leaves; and least accumu-
lation of biomass in roots, stems and leaves. It will be seen
from figure 4 that the wild type and mutants have distinctive
pleiotropies based on the quantitation of the 48 traits studied
here. It is possible to conclude that single site mutations at lli,

egd and ill loci that are not linked to each other resulted in a
very wide range of changes, some similar, some distinctive.
The lli, egd and ill mutations are thought to be in loci/genes
that have very large and wide regulatory roles in the regula-
tory gene network of C. roseus for metabolism, development
and adaptation to environment.

Figure 4. Distribution of wild type, irregular leaf lamina (ill),
leafless inflorescence (lli) and evergreen dwarf (egd) mutants of C.
roseus against the trait called time period for the loss of 50% water
from leaves (abscissa) and the trait called water content in leaves
of plants irrigated with saline water (ordinate). The value given in
the genotype circle is the total score based on all the 50 traits stud-
ied. For each trait, the wild type value was given a score of 0. The
ascending/descending values of the mutants were given 1, 2 or 3
score. The values that were significantly not different were given
the same score.
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Relationship of pleiotropies in mutants with their DNA
hypomethylation characteristic

The repeat sequences in rDNA arrays and centromeric DNAs
of lli, egd, ill, lli egd, lli ill and egd ill mutants were found to
be more or less similarly more digestable by MspI as com-
pared to the corresponding DNA sequences in the wild type.
These observations are indicative of widespread demethyla-
tion at cytosine residues in the genomes of C. roseus mutants.
In A. thaliana, widespread cytosine demethylation is known
in ddm1 and drm1 drm2 cmt3 mutants and selectively
in the coding regions of genome in met1 mutants (Zilberman
and Henikoff 2007; Saze and Kakutani 2011; Pecinka and
Mittelsten Scheid 2012) and like the latter in vim/orth mutant
(Woo and Richards 2008). These mutants also demonstrate
a variety of altered phenotypes related to plant organ devel-
opment and differential expression of protein-coding genes
as compared to their counterpart wild types. Genome-wide
demethylation is also known to occur, following expo-
sure to biotic or abiotic stress conditions and this adaptive
response is associated with upregulation and downregulation
in expression of several to many genes (Labra et al. 2002;
Alina et al. 2004; Wada et al. 2004; Akimoto et al. 2007;
Choi and Sano 2007; Lisch and Bennetzen 2011; Dowen
et al. 2012; Karan et al. 2012; Luna et al. 2012; Slaughter
et al. 2012). The upregulation of expression in protein-
coding genes following cytosine demethylation in genomes
is known to result from three consequences of demethyla-
tion: (i) removal of methylation marks at promoter or adja-
cent sequences that hindered the binding of transcription fac-
tors at these sites; (ii) removal of cytosine methylation from
gene bodies such that transcription could now occur without
premature interruption; and (iii) read through from promoters
in transposons (especially retrotransposons located upstream
of the genes) activated because of their demethylation
(Henderson and Jacobsen 2007; Aceituno et al. 2008; He
et al. 2011). The protein-coding and miRNA-coding genes
expression changes, especially upregulation, in gene expres-
sion in the lli, egd and ill mutants are thought to result from
above described three consequences of demethylation at the
gene sites.

Of the 126 genes whose transcription was investigated in
the C. roseus mutants, 85 genes were upregulated and 41
were downregulated. The downregulation of coding genes
could occur on account of one or more of the following kind
of events. (i) Due to upregulation of repressive transcrip-
tion factor(s) or miRNA(s), the target gene(s) may undergo
downregulation. (ii) Demethylation at genes may be asso-
ciated with repressive chromatin remodelling. (iii) Read
through of antisense strand from transposon located down-
stream of the gene may lead to underestimation/repression
of transcription.

Together with the principal morphological feature(s) after
which the lli, egd and ill mutants were named, mutants
differed from the wild type in many of the 50 traits for
which they were quantitatively surveyed. The traits were
reflections of the interactions between functions of genes

concerned with metabolism, organ development and
response to environment. Such genes are thought to be under
the control of regulatory gene networks. Demethylation in
the mutants caused widespread changes in the expression
of genes either directly by removal of methylation marks
from the operons or indirectly by causing such change(s)
at the sites of regulatory genes. The pleiotropies displayed
by the mutants are thought to result from gene expression
changes affecting various kinds of functions responsible for
achievement of plant morphology.

Mechanism of hypomethylation in lli, egd and ill mutants?

Inheritable demethylation at cytosine sites in the nuclear
DNA can occur via deficiency in the active DNA methylation
and maintenance DNA methylation pronounced demethy-
lation. Active methylation via RdDM is a process in
which a very large number of gene functions are involved
(Wierzbicki et al. 2012). RdDM and maintenance methy-
lations by MET1 and CMT3 methyltransferase functions
are also integrated with nucleosome remodelling functions
(Johnson et al. 2007; Woo and Richards 2008; Greenberg
et al. 2011). There is considerable redundancy in the
demethylation functions (Zhu 2009). Thus decrease in activ-
ity of one or more methylation related functions or increase
in activity of demethylation functions or both together can
produce the demethylation phenotype observed in lli, egd
and ill mutants. Differences in the morphologies of mutants
and their Mendelian inheritance indicate that mutational
events occurred at different locations on the genome of C.
roseus. Perhaps insertion of some activated transposable ele-
ment(s) was involved in each case. It is thought that methy-
lation and demethylation processes themselves must be
regulated enabling their coordinated expression. Transposon
insertions may have disrupted the regulation of methyla-
tion and demethylation processes such as to reduce methyla-
tion and increase demethylation. The observed downregula-
tion of CMT3, RDR2 and DRM2 genes in mutants provides
partial support to this explanation. The lli, egd and ill are
morphological-cum-salinity-tolerant mutants. Following the
genetic change, the genome of each of these three mutants
was heritably (permanently) altered to stress response. The
lli and egd mutations are perhaps illustrations of single site
mutation led morphologically distinctive and fertile changes
of evolutionary consequences. The lli, egd and ill mutants
of C. roseus may share some casual properties of altered
morphology with some well known epigenetic variants such
as of Linaria vulgaris (Cubas et al. 1999) and Solanum
lycopersicon (Schmitz et al. 2011). Further work on the C.
roseus mutants studied here may be helpful in advancing
knowledge about coordination between DNA methylation
and demethylation processes.
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