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Abstract

In nature plants are often simultaneously challenged by different biotic and abiotic stresses.
Although the mechanisms underlying plant responses against single stress have been studied
considerably, plant tolerance mechanisms under combined stress is not understood. Also, the
mechanism used to combat independently and sequentially occurring many number of biotic
and abiotic stresses has also not systematically studied. From this context, in this study, we
attempted to explore the shared response of sunflower plants to many independent stresses
by using meta-analysis of publically available transcriptome data and transcript profiling by
quantitative PCR. Further, we have also analyzed the possible role of the genes so identified
in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many
abiotic and biotic stresses indicated the common representation of oxidative stress responsive
genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar
pattern of changes in the oxidative stress related genes. Based on this a large scale screening
of 55 sunflower genotypes was performed under menadione stress and those contrasting in
oxidative stress tolerance were identified. Further to confirm the role of genes identified in indi-
vidual and combined stress tolerance the contrasting genotypes were individually and simulta-
neously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced
levels of stress damage both under combined stress and few independent stresses. Tran-
script profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated
that the selected genes were up-regulated under individual and combined stresses. Our
results indicate that menadione-based screening can identify genotypes not only tolerant to
multiple number of individual biotic and abiotic stresses, but also the combined stresses.
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Introduction

Sunflower (Helianthus annuus) is one of the most important oilseed crops worldwide. Sunflower
growing regions are characterized by constant occurrence of not only multiple individual biotic
and abiotic stresses, but also simultaneous drought, pathogen infection and temperature stresses
resulting in substantial loss of crop productivity [1-4]. Adding to this, recent climate changes lead
to unpredictable rainfall pattern, temperature and pathogen spread [5-8]. This lead to increased
interaction of pathogens with different abiotic stresses in the plant interphase [9-10]. Research in
the past had largely focused on understanding plant responses to individual stresses with a limited
emphasis on combined stresses [11-15]. Importantly, the available combined stress related litera-
ture indicates both shared and unique physiological and molecular responses of plants between
combined and individual stresses [9, 16-18]. Therefore, uncovering the shared mechanisms using
information from large number of individual stress based studies will be useful for understanding
the role of commonly regulated genes under combined and individual stresses.

Transcript profiling data from drought, salt, abscisic acid (ABA), several fungal pathogens,
reactive oxygen species (ROS) and cold stress treated sunflower plants are available [19-24].
Such transcriptome profiling from individual stresses such as drought and low temperature has
been used to unravel the pathways associated with multiple individual stresses [25, 26]. In spite
of large scale transcriptome data available from different individual stresses, a comprehensive
effort to identify commonly regulated genes has not yet been made. These shared responses
might reveal complex signaling networks and pathways [27, 28] facilitating understanding of
both individual and combined stress tolerance mechanisms. From this direction meta-analysis
of available data is useful. Recently, meta-analysis of microarray data from rice (Oryza sativa)
and Arabidopsis thaliana exposed to drought and bacterial stress identified several commonly
regulated stress-responsive genes [29, 30]. In a similar study in rice and A. thaliana plants
exposed to drought and bacterial pathogen, ~3100 and 900 differentially expressed genes were
identified respectively. About 38.5% and 28.7% differential genes were common to drought
and bacterial stresses in rice and A. thaliana, respectively [31]. A large number of commonly
regulated genes belonged to ROS mediated signaling and free radical scavenging pathways.

ROS is implicated in complex regulatory networks governing both biotic and abiotic stress
responses [32, 33, 34] and also known to play role under combined stresses [35]. The ROS trig-
gered downstream signaling events are also part of shared hormonal responses and metabolic
pathways [36, 37]. These signalling networks interact as a part of ‘cross-talk’ and play role in
plant adaptation to multiple individual stresses [38-41] and combined stress [10, 11, 17].
Apart from role in signaling pathway, high levels of ROS cause cellular damage due to oxidative
stress. The antioxidant defense mechanism is one of the key pathways associated with number
of individual and combined stresses [26, 42]. For example, under combined drought and heat
stress tolerance, antioxidant enzyme cytosolic ascorbate peroxidase (APX1) plays critical role
in H,O, scavenging [43]. Besides several mutants defective in ROS scavenging enzymes
showed increased susceptibility to both biotic and abiotic factors [34, 44, 45]. Catalase-deficient
barley showed leaf bleaching [46] and tobacco CAT1 antisense lines showed necrotic lesions
linked to the activation of certain pathogen responses [47,48]. In the recent past, many studies
have used exogenous ROS generating chemical compounds and ROS scavenging systems as a
potential tool to identify plants tolerant to multiple stresses [13, 49]. Genetic variability for oxi-
dative stress tolerance in crop plants has also been explored to identify multiple stress tolerant
crops [11, 44, 50, 51]. In our previous work we developed an empherical screening-based
approach for identification of individual abiotic stress tolerant crops [50, 52, 53, 54, 55]. The
selection criteria for tolerant seedlings during screening involved not only survival under stress
after acclimation treatment, but also their high growth rate during recovery.
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In the present study the major emphasis was to identify sunflower genotypes contrasting for
oxidative stress tolerance using menadione, an oxidative stress inducer and understand the
mechanisms involved in multiple individual and combined stress responses (S1 Fig). Initially,
meta-analysis was performed on sunflower transcriptome datasets selected from six publically
available biotic and abiotic stress experiments to identify commonly regulated genes with most
up- and down-regulation. The analysis led to the identification of 526 up-regulated and 4440
down-regulated stress responsive genes which are shared across the stresses. Further RT-qPCR
analysis of these genes confirmed their expression pattern observed in microarray. Subsequently
expression pattern of the identified genes was studied using the sunflower genotypes having
contrasting stress tolerance under multiple individual and combinations of stresses namely,
drought, cold, methyl viologen, NaCl and pathogen. Results from this study revealed the plant
responses to multiple individual and combined stresses and identified candidate genes for fur-
ther studies on development of broad-spectrum stress-tolerant sunflower in the future.

Materials and Methods
Plant material and growth conditions

The sunflower genotypes were obtained from different centers of All India Coordinated
Research Project (AICRP) for sunflower at University of Agricultural Sciences (UAS), GKVK
Bangalore, India. The genetic backgrounds and agronomic characteristics of these 55 lines are
described in S1. The sunflower seeds of var. Morden (an open pollinated heterogeneous popu-
lation) were procured from National Seeds Project, UAS, GKVK, Bangalore, India. Two-day-
old seedlings were grown on moist filter paper in Petriplates and incubated at 30°C in seed ger-
mination chamber. For the seedling level stress treatment, plants were grown in pots with 2 kg
of soil under greenhouse conditions with 10/14 h day/night cycle, 27°C temperature and 80%
relative humidity.

Data collection and meta-analysis

The transcriptomic data of individual biotic and abiotic stresses on sunflower was collected
from array express database (https://www.ebi.ac.uk/arrayexpress/) (52 Table). This data
(http://www.ebi.ac.uk/arrayexpress/experiments/browse.html¢keywords=&organism=

Helianthus+annuus&array) was manually curated using Microsoft Excel and control and treat-
ment files were separated. The curated data were used as input files for meta-analysis. Integra-
tive Meta-analysis of Expression data (INMEX) tool [56] was used for meta-analysis of
multiple gene-expression datasets for identifying commonly up- and down-regulated genes.
Stouffer’s model was used to integrate the data with treatments and controls, thereby com-
monly expressed (shared) genes among the different stress conditions were identified [57].
This method is used in meta-analysis of data across studies using p-value, sample size and esti-
mated direction of effect for each study. This method can easily execute meta-analyses even
when different analytical approaches were used in each individual study [58]. For the data
upload, input data (file format.txt or.zip) was arranged in Excel file with gene expression values
and corresponding probe ID or gene name in rows and samples or experiments in columns.
Each column or treatment was named as per specific treatments. Further the up- and down-
regulated gene IDs were converted from Affimetrix to Uniprot IDs. The different dataset were
merged together into a mega-dataset (S2 Fig). The functional annotation of the identified genes
was derived using Blast2GO tool [59]. Blast2GO identifies the function of a given sequence pri-
marily based on the gene ontology (GO) term. It optimizes the function of a given sequence
when compared to homologous sequences considering the similarity and the extent of homol-
ogy in the selected database (https://www.blast2go.com/).
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Individual stress imposition

Oxidative stress in seedlings by menadione. Menadione (2-methyl-1, 4 napthoquinone)
sodium bisulfite (Cat No. M2518-100G, Sigma Aldrich), a free radical inducer [50, 60] was
used in this study to impose oxidative stress in seedlings 48 h after germination. Menadione is
a quinone compound and upon auto oxidation and reduction process, it generates superoxide
radicals in the cell. It is suitable for imposing oxidative stress in non-photosynthesizing tissues.
Seedlings of 2.5-3 cm length were incubated at a particular concentration of menadione (0.25,
0.5, 1,2,3,4,5 mM) for 2 h at 30°C under constant shaking. After the treatment, seedlings
were washed thoroughly using distilled water. A subset of the control seedlings were trans-
ferred to Petriplates on moist filter paper and allowed to recover for 3 d at 30°C. After the
recovery period, survival and recovery growth were measured. Another subset of seedlings
were allowed to recover for 5 h at 30°C and used to estimate cell death [50, 61, 62]. In all the
experiments three replicates were taken and each replicate had 25 seedlings. The seedlings
maintained at 30°C throughout the experimental period, were used as absolute controls.
Reduction in growth of seedlings was calculated using the following formula.

Growth of seedlings after recovery

Reduction in growth over absolute control (%) = X100

~ Growth of seedlings in absolute control

Ten-day-old sunflower seedlings were treated with 1 mM menadione and after 2 h the tissue
from leaf, root and whole seedling were frozen. RNA from these tissues was extracted and
cDNA was synthesized using the protocol described under RT-qPCR. Expression of oxidative
stress responsive genes namely superoxide dismutase (SOD, accession number AY172569),
ascorbate peroxidase (APX, accession number AGU36670), catalase (CAT, accession number
128740), and heat shock protein (HSP17, accession number U96641) were studied using RT-
qPCR.

Oxidative stress in leaves by methyl viologen. Methyl viologen (Paraquat dichloride;
M2254, Sigma Aldrich), a ROS generating herbicide in chloroplast was used to impose oxida-
tive stress under 1400 pmol m™s™" in sunflower leaves. This compound interferes with photo-
synthetic electron transport chain to produce ROS in photosynthesizing tissues under high
light. Oxidative stress was imposed by spraying 5 uM methyl viologen on 7-day-old plants and
the tissue was collected after 12 h for different assays (S5 Fig).

Drought stress. Pots were filled with potting mixture of known weight and were irrigated
until all the soil macro and micro pores were filled and excess water was drained overnight.
Based on water holding capacity for this soil mixture total weight of pot with soil mix for 100%
field capacity (FC) was arrived. Drought stress was imposed by gravimetric approach [63].
10-day-old plants in pots were used for the experiment. Stress was imposed by withholding
irrigation and the plants meant for drought stress were maintained at 30-40% FC for one
week. At the end of stress period, stress responses were studied in the leaves.

NaCl stress. NaCl 200 mM was dissolved in water and irrigated to the pots having 7-day-
old plants. After 5 days of treatment the leaf tissue was frozen for gene expression and bio-
chemical studies (S5 Fig).

Cold stress. Plants (10-day-old) were subjected to cold stress by incubating at 4°C for 2 h
and tissue was frozen for further studies (S5 Fig).

Downy mildew pathogen infection. Field grown plants (45-day-old) were naturally
allowed to infect with Plasmopara halstedii. The uniformly infected symptomatic leaves were
used to rub on the 7-day-old plants grown in pots. At the University of Agricultural Sciences
downy mildew infected ‘sick plots’ are maintained for varietal trails [64]. The experiment was
carried out during spring (humidity 60-70%, 28°C day and 16°C night temperature). In spring
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P. halstedii infects sunflower seedlings through germination of overwintered sexual oospores.
For the systemic plant colonization by disseminating structures on various plant organs inter-
cellular hyphae play critical role under humid conditions [65]. This pathogen causes seedling
damping off, dwarfing of the plant, bleaching of leaves, and visible white sporulation on the
lower side of leaves [65]. Disease index was scored after 5 days and tissue was collected for gene
expression (S5 Fig). The pathogen infection incidence was assessed by scoring visible white
spores and bleaching symptoms. Scoring was done as follows: 0 = no symptoms on the leaves;

1 =<1%;2 =1-10%; 3 = 10-25%; 4 = 25-50%; 5 = 50-75%; 6 = > 75% of total leaf area
affected. Disease index (DI) was calculated using the following formula [66]:

Sum of numerical rating x 100

Di ind DI) =
isease index (DI) Total number of inoculated leaves x 6

Six in the formula indicates maximum disease grade.

Combined stress imposition

Ten-day-old plants were used for combined stress imposition. Two types of combined stresses
were imposed in this study. One is combination of drought and pathogen, in which plants were
initially exposed to drought stress by withholding the water for 3 days. The pathogen was inoc-
ulated on the first day of water withholding. The tissue was collected after 3 days of combined
stress treatment. Second type of combined stress involved subjecting plants to combination of
drought, NaCl, cold, oxidative and pathogen stress as per following procedure. Initially control
grown plants were irrigated with 200 mM NaCl and then water was with-held for 3 days. Dur-
ing same period plants were simultaneously exposed to cold stress for 2 h and sprayed with

5 um methyl viologen and inoculated with pathogen. All these process were carried out within
3 days period and tissue was frozen for further analysis. Minimum of three replicates were
maintained for each treatments. The overview of the combined stress experiment is presented
in S5 Fig.

Estimation of H,O,

The levels of H,0, play critical role in signaling and act as substrate for reactive oxygen species
(ROS) [67] and we quantified the stress induced H,0, using xylenol orange assay [68]. The
xylenol orange reagent was prepared in 50 ml of distilled water containing 1 mL of 50 mM fer-
rous ammonium sulphate in 2.5 M H,SO, and 62.5 pL of 125 uM xylenol orange (Sigma chem-
icals, cat No. 52097-5G, Bangalore) and 0.9019 g sorbitol. The tissue sample was extracted in
phosphate buffer (pH 7.5). From this 25 pL supernatant was taken and mixed with 275 pL of
xylenol orange reagent. The reaction mix was incubated for 30 min at room temperature and
absorbance was measured at 560 nm against xylenol orange reagent only as blank [68]. Stan-
dards were prepared by dilution of reagent grade 30% H,O,.

Estimation of Melandialdehyde (MDA) content

Melandialdehyde (MDA) is the end product of lipid peroxidation. MDA levels are indicators
of extent of stress impact on plant cell membrane. Leaf tissue (1.0 g) was homogenized in 5 mL
of 5% (w/v) trichloroacetic acid and the homogenate was centrifuged at 12,000 g for 15 min at
room temperature. The supernatant was mixed with an equal volume of thiobarbituric acid
[0.5% in 20% (w/v) trichloroacetic acid], and the mixture was boiled for 25 min at 100°C, fol-
lowed by centrifugation for 5 min at 7,500 g to get clear solution. Absorbance of the superna-
tant was measured at 532 nm. MDA content in leaf tissue was calculated using standard graph
developed using MDA (Sigma chemicals cat No.63287-1G-F, Bangalore) [69].
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Real-time quantitative RT-PCR (RT-gPCR)

Total RNA was extracted according to the protocol described by Datta et al. [70]. First strand
cDNA was synthesized by oligo (18 mer dT) primers using Molony murine leukaemia virus
reverse transcriptase (MMLV-RT; MBI Fermentas, Hanover, MD, USA) according to manu-
facturer’s instructions. The cDNA pool was used as a template to perform RT-qPCR analysis.
PCR reactions were performed in optical 96-well plates (Applied Biosystems) with an ABI
PRISM® 7900 HT sequence detection system, using SYBR™ Green to monitor the synthesis of
double-stranded DNA. A standard thermal profile with the following conditions was used,
50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. Amplicon dis-
sociation curves were recorded after cycle 40 by heating from 60 to 95°C with a ramp speed of
1.9°C min™". The relative expression levels of the selected genes under a given stress condition
was calculated using comparative threshold method by comparing reference control gene [71].
Actin (FJ487620.1) and Ubiquitin (X14333.1) were used as internal controls to normalize RT-
qPCR. Details of all primers used in this study are given in S3 Table.

Statistical analysis

The data obtained was analysed using two-way analysis of variance (ANOVA) as per the proce-
dure given by Fischer [72]. Data points with “” indicate significant differences at P<0.05.

Results

Identification of commonly regulated genes under abiotic and biotic
stresses using meta-analysis of transcriptome data

The sunflower cDNA arrays used in this study were derived from transcriptomic studies avail-
able from the public databases. The data from plants exposed to drought, heat, NaCl, oxidative
stress, cold stress and an oomycete pathogen, Plasmopara halstedii (causal agent of downy mil-
dew in sunflower) infection were collected to identify stress responsive genes shared among
these stresses (S2 Table).

To identify the commonly up or down-regulated genes across the six stresses, meta-analysis
was performed. The overall experimental approach followed is detailed in S2 Fig. The analysis
showed 526 up-regulated, 4440 down-regulated genes and 1953 genes with similar expression
like control (Fig 1). The number of genes upregulated in drought and pathogen was higher
than all other stresses. Analysis of differentially expressed genes specifically under drought and
pathogen stress showed 3922 up-regulated and 119 down-regulated genes. This data indicated
that several genes are shared under multiple individual stresses (Fig 1b). The analysis showed
no genes shared between cold and oxidative stress (Fig 1¢). On the contrary maximum number
of shared genes were found between pathogen stresses (two races of downy mildew pathogen)
and oxidative stress. Particularly, 1595 and 1586 genes were down-regulated and 462 and 445
genes were up-regulated in race 710 and race 334, respectively. Further, ABA-ROS and
drought-ROS comparison also revealed several commonly regulated genes.

The up-regulated genes shared across the stress were classified into different classes based
on their molecular function using Blast2GO tool. Large number of genes were found to be
involved in protein binding (9.8%), ATP binding function (7.3%), oxidoreductases (4.5%),
DNA and RNA binding (4.2 & 4%) in addition to hydrolases, ligases, zinc ion binding, kinase
activity, transcription factors and membrane transporters (S6 Fig). The remaining genes had
unknown function. Further 29 genes commonly up- or down-regulated in many stresses were
directly or indirectly involved in regulation of ROS and oxidative stress tolerance were short-
listed for further analysis (S4 Table). The upregulated genes were subjected to Agrigo tool to
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Fig 1. Meta-analysis of sunflower transcriptome data from 6 different experimental datasets. The raw
data were integrated in meta-analysis tool INMEX and differentially expressed genes were identified. The
number of differentially expressed genes under all stresses (a), between drought and pathogen stresses (b).
Based on individual stress comparisons, commonly up-regulated, down regulated and unchanged genes
were identified (c).

doi:10.1371/journal.pone.0157522.g001

map the genes to identify associated pathways and based on biological function, those genes
were found to be involved in oxidation reduction process (S7 Fig). Similarly in the large num-
ber of down regulated genes were involved in developmental processes, hormone responses,
defense responses, transcription, translational events and protein modifications (S8 Fig). The
genes involved in plant development, including anatomical structure (23 genes), flower (8
genes), pollen (6 genes) and seed (8 genes) development responsive genes were downregulated.
The downregulated genes with response to stimulus include multicellular organismal process
(34 genes), responses to stress (34 genes), responses to chemical stimulus (28 genes), abiotic
stimulus (19 genes) and defense responsive (14 genes). The genes that were involved in many
biosynthetic process (57 genes), macromolecular biological process (82 genes), catabolic pro-
cess (16 genes), macromolecule modification (25 genes), protein modification (24 genes) and
post translational modification (20 genes) were downregulated. Based on these results and lit-
erature information [73] we hypothesised that oxidative stress tolerance mechanisms are linked
to tolerance of plants to multiple number of individual stresses and also combined stresses.

Menadione induces oxidative stress and broad-spectrum stress effects

Menadione, a compound that produces superoxide radicals, has been used to induce oxidative
stress in plants [50, 74, 75]. Seedlings (two day old) of var. Morden were treated with different
concentrations of menadione and response was recorded after recovery. Mild concentrations
of menadione (0.25 to 2 mM for 2 h) reduced the shoot and root growth compared to that of
water treated controls. Root and shoot growth was reduced at concentration higher than 3 mM
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Fig 2. Transcript expression profile of oxidative stress responsive genes in menadione treated
sunflower seedlings. Expression pattern of HaSOD, HaAPX, HaCAT, and HaHSP17 were studied using RT-
gPCR. Sunflower seedlings were exposed to 1 mM menadione for 2 h. RNA was extracted after the stress
period from root, leaf and whole seedling and cDNA was synthesized. ‘*’asterisks indicate a significant
difference from the control (two way ANOVA and Duncan’s multiple range test at P<0.05). Error bars indicate
standard error of mean of three biological replicates.

doi:10.1371/journal.pone.0157522.g002

menadione treatment for 2 h (S9 Fig). Seedling survival and growth after recovery period were
reduced as the concentration of menadione and duration of incubation increased. However at
high concentrations of menadione (LDsy =2 mM-3 h or 3 mM-0.5 h), the seedlings abruptly
collapsed due to the cell death as quantified by Evans blue staining (S9 Fig; S5 Table).

Further the expression of few known stress responsive genes was tested in the menadione
stressed seedlings (var. Morden). The expression levels for SOD, APX, CAT and HSP genes
were up-regulated compared to non-stress seedlings in roots and leaf. The transcript expres-
sion of these genes in seedlings was similar to the expression in roots (Fig 2). This indicated
that menadione-induced oxidative stress enhances the expression of genes involved in ROS
scavenging and stress adaptation.

Menadione stress screening identifies genotypes contrasting in stress
tolerance

To identify the contrasting genotypes, seedlings of 55 sunflower genotypes were subjected to
menadione stress and survival and recovery growth were recorded (Fig 3a & 3b). During the
national trials, these genotypes were grown in various geographical locations in India including
Akola, Bangalore, Coimbatore, Dholi, Hisar, Ludhiana, Nandyal, Nimpith and Raichur. Owing
to the characteristic abiotic stress occurrence in these locations, they were exposed to various
stresses during their growth season. Six genotypes were found to be extremely sensitive to oxi-
dative stress based on survival and recovery data (S6 Table). The Z-distribution analysis for
both survival and recovery growth was used to identify contrasting genotypes. Based on this,
two contrasting genotypes namely KBSH53 and KBSH42 were identified as tolerant and sus-
ceptible genotypes, respectively (Fig 3¢). These two genotypes were also contrast for resistance
to powdery mildew (S1 Table). These two genotypes and another variety Morden identified
through temperature induced stress response is moderately tolerant and high yielding, were
used to study the effect of multiple individual and combined stresses.

Oxidative stress tolerant genotypes exhibits tolerance to multiple
individual and combined stresses
To test tolerant genotypes identified through menadione-based screening for their response to

multiple individual and combined abiotic and biotic stresses, these genotypes were subjected to
different stresses as shown in the S5 Fig. KBSH53 showed less disease index as compared to
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Fig 3. Genetic variability of sunflower genotypes under menadione-induced oxidative stress.
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seedlings were classified using Z- distribution analysis for the 55 genotypes (c). The first and fourth quadrant
indicates susceptible and resistant genotypes respectively. The seedlings were exposed to acclimation
stress of 1 mM menadione at 30°C and subsequently exposed to a higher concentration of menadione.

doi:10.1371/journal.pone.0157522.g003

KBSH42 (Fig 4a). In these genotypes accumulation of ROS under drought plus pathogen com-
bined stress and all (pathogen, NaCl, drought, cold and methyl viologen) combined stresses is
significantly higher than the independent stresses as shown by NBT staining (S10 Fig).
KBSHS53 showed less NBT staining under pathogen and other treatments and KBSH42 showed
higher accumulation of superoxide radicle and higher accumulation of H,0O, as compared to
KBSH53 in all stresses (Fig 4b & S10 Fig). Similarly, MDA levels showing lipid peroxidation
was high in KBSH42 and low in resistant genotype KBSH53 (Fig 4c). Consistently, susceptible
genotype KBSH42 showed higher lipid peroxidation. This confirms that the genotypes identi-
fied through menadione screening showed response similar to that exhibited under oxidative
stress under multiple individual and combined drought and pathogen stress. Taken together,
large scale screening of sunflower genotypes using menadione identified contrasting genotypes
KBSH42 and KBSH53 for individual and combined stress tolerance (Fig 4).

Gene expression analysis under individual and combined stress
explains the molecular basis for susceptibility and resistance of
genotypes

To study the gene expression pattern in contrasting genotypes under individual and combined
stresses, a total of 15 up- and 14 down-regulated genes that were selected from meta-analysis
were used for RT-qPCR (54 Table). The transcript analysis showed that many genes identified
by meta-analysis were up-regulated in the tolerant genotype KBSH53 in all combined stresses
and drought plus pathogen stress. The transcript levels were higher for genes encoding DNA
topisomerase, aquoglyceroporin, cystathionine y-synthase, envelope glycoprotein RL10, hexo-
kinase, and photosystem I reaction center proteins under both type (drought plus pathogen,
and pathogen, NaCl, drought, cold and methyl viologen all together) of combined stresses.
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Fig 4. Individual and combined stress response of the three genotypes varying in oxidative stress
tolerance. Disease score on plants exposed to P. halstedii (a) 7-day-old sunflower plants were exposed to
pathogen spores for 5 days and. Score was assigned from 1-10 based on low to high infection. H,O, levels
were assessed from leaves of different biotic and abiotic stressed plants (b). The leaf tissue was ground in
PBS buffer and aliquots were used for estimation of H,O, levels by using a modified ferrous oxidation-xylenol
orange (FOX) assay. MDA levels in stressed plants (c) was quantified by TBARS assay to study the extent of
damage on lipids. **’ indicate a significant difference from the control (Student’s t test, P<0.05). Error bars
indicate standard error of mean. Data were pooled from two independent experiments representing three
biological replicates.

doi:10.1371/journal.pone.0157522.g004

However, the majority of the transcripts upregulated either one fold or less in individual
stresses. Many genes upregulated in meta-analysis data also upregulated in the drought plus
pathogen combined stress (Fig 5).

In the susceptible genotype KBSH42 several genes showed reduced transcript levels under
individual and combined drought plus pathogen stresses. Only Microsomal oleic acid desatur-
ase (O-6FAD) gene showed up-regulation in all combined stress. The DnaJ gene found to be
down-regulated in meta-analysis results showed up regulation under combined drought plus
pathogen stresses (Fig 5). Similarly, the genes encoding acid phosphatase 1, lipid transfer pro-
tein isoform 3, ethylene responsive transcription factor 3 and late embryogenesis abundant 4
were up-regulated in combined drought plus pathogen stress which showed similar trend of
transcript levels as predicted by meta-analysis. In nutshell, the transcript profiling of selected
genes both under individual and combined stresses showed that the transcriptome response in
KBSH53 is different from KBSH42 (Fig 5).

Discussion

Meta-analysis is a useful tool to identify shared genes among multiple
individual and combined stresses

Understanding the shared mechanisms contributing to two or more individually or simulta-
neously occurring stresses is important to improve crop productivity under foreseeable
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Fig 5. Transcript profiling of sunflower genotypes varying in stress tolerance under individual and
combined stresses. Morden, KBSH42 and KBSH53 plants were subjected to individual stresses namely,
methyl viologen-induced oxidative stress, cold, salt, drought and pathogen. Another batch of plants were
subjected to two type of combined stresses, namely drought and pathogen and all stresses combined. The
stress protocol is described in S5 Fig. From these stressed plants total RNA was isolated and cDNA was
prepared and used for RT-gPCR. Three replicates were maintained. The expression was normalized to
HaActin and fold change was calculated against the control samples. Two way ANOVA and Duncan’s
multiple range test at P<0.05 was carried out using three biological replicates.

doi:10.1371/journal.pone.0157522.9005

complex stress situations. But, adaptation of plants to such individual and combined stress is
imparted through a complex, yet to be fully understood mechanisms. To dissect molecular
mechanism behind multiple individual stress and combined stress tolerance in sunflower,
meta-analysis approach was employed [29] using publically available transcriptome datasets
from individual stress studies. The analysis revealed 526 genes up-regulated and 4440 genes
down-regulated among P. halstedii infection, ROS treatment, drought, ABA treatment and
cold stresses. Most of the commonly up- or down- regulated genes identified from meta-analy-
sis showed similar expression pattern under all combined stresses. Between ROS and cold
stress response no commonly regulated genes were found. A simple explanation is either the
genes responsive to cold and ROS are independent or the levels of stress imposed was not suftfi-
cient to trigger the shared responsive genes. Role of several of these genes under multiple indi-
vidual and combined stresses are largely unknown (S4 Table). The genes encoding C2H2 zinc
finger, MYB, MYC/bHLH and ethylene responsive factor (ERF) belong to specific family of
transcription factors. These transcription factors are known to regulate several downstream
functional genes in response to different environmental stresses [9, 11]. Another interesting
class of genes found were those encoding H2A, DNA topoisomerase 2, DNaJ and DEAD

box helicases. Apart from these, genes involved in histone relaxation, DNA repair and RNA
secondary structure removal under stress were also found [76, 77, 78, 79]. Further the down-
stream genes encoding chitinase, pathogen resistance 5 (PR5), autophagy related protein and
myo-inositol-1-phosphate synthase that are involved in plant defense against pathogens were
identified along with several chlorophyll and light harvesting complex protein encoding genes.
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A similar group of genes identified through microarray profiling of sunflower leaves exposed
to cold and NaCl stress showed dynamic changes in transcript levels of transcription factors,
genes related to translation, protein degradation/folding and ROS production or scavenging
mechanisms [80]. Similarly comparative gene expression analysis under highlight (HL), high
temperature (HT) and combined HL and HT stresses in sunflower leaves and seeds revealed
differential expression of 89, 113 and 186 genes, respectively [81]. Meta-analysis of 6 experi-
mental datasets under different stresses revealed several genes belonging to ATP-, DNA-,
RNA-, protein- binding, hydrolase, ligase, oxidoreductase, serine threonine kinase, transcrip-
tion factor, zinc ion binding and transporter activity. The data suggests that meta-analysis
approach can be potentially employed to identify shared stress responsive genes, which can
reveal the mechanism of combined and multiple stress tolerance.

Owing to the complexity involved in handling all combined stresses, we further focused on
pathogen and drought combination for detailed systematic confirmation of the meta-analysis
results and to dissect the shared mechanism between individual and combined stresses. Inter-
estingly the meta-analysis showed that a large number of commonly regulated genes belong to
the ROS-responsive or oxidative stress scavenging system (S7 Fig). ROS scavenging proteins
are shown to act as early sensors to prevent potential oxidative stress damage [82]. The
response of 187 nuclear encoded ROS responsive genes and 1880 transcription factors showed
rapid and coordinated expression under H,O, [83]. This prompted us to further examine the
role of ROS pathway related genes using RT-qPCR under combined stress. Under combined
drought and pathogen stress, the genes identified as up-regulated by meta-analysis consistently
showed higher transcript levels in var. Morden. Interestingly most of the genes identified from
the analysis were also induced in sunflower seedlings treated with menadione-induced oxida-
tive stress (Fig 5). Since these genes were also separately confirmed for their up-regulation
under combined drought and pathogen stress, we speculated the strong overlap in some gene
expression between the methyl viologen or menadione-induced oxidative stress and the com-
bined stress. This overlap can be attributed as shared response of plants among the combined
and oxidative stresses. Meta-analysis of drought, bacterial stress response in rice and A. thali-
ana revealed 38.5% (1214) and 28.7% (272) differentially expressed genes (DEGs) respectively
and a majority of these showed conserved expression status in both stresses (30). These studies
suggests that several genes act as part of shared response between combined and individual
stresses.

Tolerant genotypes identified through menadione-based screen showed
multiple individual and combined stress tolerance

We hypothesized that menadione-based screening of genetically diverse sunflower genotypes
could identify tolerant and susceptible groups not only for oxidative stress tolerance, but also
for tolerance to combined stresses (S5 Fig). Specifically, menadione-based screen has been ear-
lier demonstrated as one of the methods suitable for screening and identification of contrasting
stress tolerant genotypes in sunflower [50]. Moreover, owing to highly cross- pollinated nature
of sunflower, the selected 55 genotypes are expected to have genetic variability for multiple
individual and combined stress tolerance. The pool of genotypes used in this study represent
genetic background with tolerance to various abiotic stresses, namely drought, temperature
extremes and salinity apart from superior agronomical characteristics (S1 Table). Our screen-
ing process identified KBSH53 and KBSH42 as tolerant and susceptible genotypes, respectively.
Interestingly, the susceptible genotype also showed susceptibility to combined drought and
pathogen stress (Fig 4). Consistently, the resistant genotype showed improved performance
under individual drought and pathogen stress and also combined stress. Taken together, these
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evidences support our hypothesis and show that the approach used in this study can identify
not only genes responsible for multiple individual stress tolerance, but also for the combined
stress. The usefulness of data from individual stress studies to identify genes for combined
stress tolerance is possible because of crosstalk between many signalling pathways during mul-
tiple stresses [32, 33, 84, 85].

Meta-analysis identified genes in multiple individual and combined
stress tolerance

Meta-analysis of sunflower transcriptome datasets revealed 526 up and 4440 down-regulated
genes in all combined stresses. RT-qPCR results for selected 29 genes in the tolerant genotype
KBSH53 revealed candidate genes for combined stress tolerance. Amongst these genes, 17 were
induced under all combined stress (pathogen, NaCl, drought, cold and methyl viologen stress)
in tolerant genotype KBSH53, but susceptible genotype did not show transcript changes over
control. In general, under any of the independent stresses the identified genes did not show sig-
nificant fold change in both up- or down-regulated gene category. Overall the data suggest that
under combined or multiple stresses, the meta-analysis can identify candidate shared stress
responsive genes.

Cross-talk and role for identified genes

Several genes showed up-regulation in the tolerant genotype KBSH53 including increased tran-
script levels of transcription factors C2H-ZF, MYB, MYC2, ERF12 and ERD6. Overexpression
of some of these transcription factors resulted in multiple stress tolerance [86]. Since the litera-
ture information on validation is scarce, many other genes identified in the meta-analysis
could not be verified for their functional relevance. However, we subsequently review few other
evidences that support correlation between meta-analysis identified genes and their validation
in literature. The induction of transcription factors under combined stress has been reported in
a previous study, wherein it was observed that combined heat and drought stress lead to upre-
gulation of WRKYs and ERFs [87]. One of our previous study also showed the overexpression
of AtWRKY28 in A. thaliana enhances drought and NaCl stress tolerance [88, 89]. The tolerant
genotype also showed up-regulation of transcriptional regulators such as DNA topoisomerase
6, DEAD box helicases, ribosomal protein L10 (RPL10), ROS detoxification enzyme encoding
genes like dehydrogenases, genes involved in protein stability such as chaperonins, late
embryogenesis abundant 14 (LEA14), myo inositol phosphate synthase, calcium induced pro-
tein kinase (CIPK), lipid transport proteins and histidine kinases. It is evident that under com-
bined stress, receptor like kinases, protein kinases (MAPK and CIPK), small GTP- binding
proteins and membrane intrinsic proteins (MIP) are up-regulated [90]. Further, PR and chiti-
nases also showed up-regulation in tolerant genotype and these genes are independently
known to impart resistance to different pathogens [84]. These genes up-regulated under com-
bined stress have potential to improve stress tolerance through complex network mode of
mechanisms. Taken together, our data demonstrated that the meta-analysis can efficiently
identify the potential candidate genes for combined stress tolerance.

In conclusion, salient features of this study include, one, menadione-based screening can be
used as means to generate oxidative stress and explore genetic variability in agronomically
superior genotypes for oxidative stress tolerance. Second, meta-analysis can be potentially
employed to identify candidate genes for multiple and combined stress tolerance. Third, identi-
fied genes are the potential candidates for genetic engineering of plants to combat multiple
environmental stresses.
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