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Rice auxin influx carrier OsAUX1 facilitates root hair
elongation in response to low external phosphate
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Root traits such as root angle and hair length influence resource acquisition particularly for

immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by

disrupting the OsAUX1 auxin influx transporter gene in an effort to improve rice P acquisition

efficiency. We show by X-ray microCT imaging that root angle is altered in the osaux1mutant,

causing preferential foraging in the top soil where P normally accumulates, yet surprisingly, P

acquisition efficiency does not improve. Through closer investigation, we reveal that OsAUX1

also promotes root hair elongation in response to P limitation. Reporter studies reveal that

auxin response increases in the root hair zone in low P environments. We demonstrate that

OsAUX1 functions to mobilize auxin from the root apex to the differentiation zone where this

signal promotes hair elongation when roots encounter low external P. We conclude that auxin

and OsAUX1 play key roles in promoting root foraging for P in rice.
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Food security represents a pressing global issue. Crop pro-
duction has to double by 2050 to keep pace with predictions
of global population increasing to 9 billion. This target is

even more challenging given the impact of climate change on
water availability and the drive to reduce fertilizer inputs to make
agriculture environmentally sustainable. In both cases, developing
crops with improved water and nutrient uptake efficiency by
manipulating root architecture, which critically influences nutri-
ent and water uptake efficiency would provide part of the solu-
tion. For example, root angle impacts phosphate acquisition
efficiency (PAE) as this nutrient preferentially accumulates in the
top soil1,2.

Very few genes that regulate root architecture traits such as
root angle have been identified in crop plants to date3. In con-
trast, major progress has been made characterizing genes and
molecular mechanisms controlling root angle in the model plant
Arabidopsis thaliana4. AUX1 was one of the first genes identified
in Arabidopsis to control root angle5,6 and later shown to encode
an auxin influx carrier7,8. AUX1 regulates root angle by trans-
porting auxin from gravity-sensing columella cells at the root tip
via the lateral root cap to elongating epidermal cells that undergo
differential growth to trigger root bending9,10. Such detailed
functional information in model organisms opens possibilities to
perform translational studies to manipulate equivalent root traits
in crops controlled by orthologous genes.

In this study, we describe how a translational approach was
initially adopted to improve PAE in rice by genetically manip-
ulating the orthologous AUX1 sequence. Reverse genetic studies
in rice combined with non-invasive X-ray (microCT) imaging in
soil confirmed that root angle was significantly altered in osaux1
compared to wild-type plants. Nevertheless, physiological
experiments performed on osaux1 (versus wild-type) failed to
demonstrate improvement in PAE, suggesting that OsAUX1
controls other traits important to P acquisition. Further studies
revealed OsAUX1 was also required for rice root hair elongation,
an important adaptive response designed to forage for immobile
nutrients such as P in the soil11. Auxin quantification and
reporter lines revealed that under low P conditions, auxin levels
are elevated in the root hair zone. We conclude that in response
to low external P supply, OsAUX1 is required to transport ele-
vated auxin from the root apex to the differentiation zone to
promote root hair elongation and hence facilitate rice P acqui-
sition. In parallel papers, we demonstrate that this auxin-
dependent root hair response to low external P is highly con-
served in the dicotyledonous model Arabidopsis thaliana12 and
which relies on AUX1 to promote hair elongation via intracellular
auxin and calcium signaling13.

Results
Rice root angle is altered by disrupting the OsAUX1 gene. The
AUX1 gene family in rice is encoded by five closely related
OsAUX1/LAX genes (Supplementary Figure 1a). Bioinformatic
analysis revealed that the two rice sequences (Os01g63770 and
Os05g37470) were closely related to AUX1. In order to identify
which rice sequence(s) represents an orthologous gene, we tested
the ability of each of their cDNA sequences to complement the
Arabidopsis aux1 agravitropic phenotype. This genetic assay
revealed that only one of the OsAUX1 sequences (Os01g63770)
was able to successfully rescue the aux1 mutant’s root agravi-
tropic defect (Supplementary Figure 1b, c). Our observations are
consistent with previous complementation experiments using
Arabidopsis AUX/LAX sequences, which revealed that gene family
members had undergone a process of sub-functionalization14.

To test the in planta function of OsAUX1 in rice directly, we
characterized two independent T-DNA insertion lines (3A-51110

and 3A-01770) disrupting the Os01g63770 genomic sequence in
the Dongjin background (see “Methods”). The T-DNA insertion
lines were termed osaux1-1;1 and osaux1-1;3 (in agreement with
Zhao et al.15). Southern hybridization confirmed that single T-
DNA insertion events had disrupted the OsAUX1 gene in osaux1-
1;1 and osaux1-1;3, respectively. PCR amplification of genomic
fragments adjacent to each T-DNA followed by sequencing
confirmed that T-DNA insertions in osaux1-1;1 and osaux1-1;3
had disrupted the gene coding sequence in exon 3 and exon 6,
respectively (Fig. 1a). Reverse transcription quantitative-PCR
(RT-qPCR) analysis also revealed that both T-DNA alleles
exhibited significantly reduced OsAUX1 transcript abundance
(>80%; Supplementary Figure 2). Hence, osaux1-1;1 and osaux1-
1;3 appear to represent null alleles.

Phenotypic analysis of young seedlings (homozygous for the T-
DNA inserts) germinated on vertical agar plates revealed a
reduced root angle phenotype in both osaux1-1;1 and osaux1-1;3
alleles compared to the positive gravitropic behavior of the wild-
type control roots (Fig. 1b). The gravitropic defect became
apparent in both primary and crown roots of osaux1 seedlings
4–8 days after germination (Fig. 1b). Mutant seedling primary
and crown roots exhibited altered root angles compared to wild-
type roots that grew closer to the vertical (Supplementary
Figure 3). Similarly, seedling primary roots of both osaux1 alleles
failed to reorient after a 90° gravity stimulus in contrast to wild-
type roots (Supplementary Figure 4). Hence, the OsAUX1 gene
appears to control primary and crown root gravitropic responses
and angle in rice.

aux1-1;1 aux1-1;3

aux1-1;1aux1-1;3WT

a

b

Fig. 1 OsAUX1 controls rice root angle. a Schematic representation of T-
DNA insertion sites in OsAUX1 gene. b Time course images of root angle in
WT, osaux1-1;1 and osaux1-1;3 T-DNA mutants. Images were taken after
3 days after seed germination (3DAG) to 8 days post germination (8DAG).
White bars represent 0.5 cm
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Phosphorus acquisition efficiency is not improved in osaux1.
Root angle represents an important determinant for PAE. Many
crops with roots whose angles deviate more from the vertical
exhibit greater P foraging ability since this nutrient preferentially
accumulates in the upper soil volume11. We initially investigated
whether OsAUX1 controls root angle in rice plants grown in soil.
The architecture of wild type versus osaux1 lines was compared
using X-ray microCT and rhizotron-based root phenotyping
approaches16. When using microCT, rice lines were grown in soil
for a total of 4 weeks, non-invasively scanning samples every
week. This non-destructive imaging approach helped reveal the
temporal evolution of wild-type and mutant rice root archi-
tecture. Clear differences in root distribution within the soil
volume were apparent at week 2 (Fig. 2) with osaux1 lines pre-
ferentially colonizing the upper soil space compared to wild type.
Large rhizotrons (1.5 M depth by 0.5 M width) enabled imaging
of 2D root architecture in older rice plants, and independently
validated differences observed using microCT in root angle and
colonization of the upper soil profile by osaux1 mutant roots
(Supplementary Figure 5). Hence, rice plants lacking OsAUX1
exhibit a major change in the vertical distribution of roots.

Given the striking difference in osaux1-1 root angle compared
to wild type when grown in soil (Fig. 2 and Supplementary
Figure 5), we next tested whether the mutant also had improved
PAE. We performed a series of experiments designed to assess
whether the osaux1 mutant’s root angle phenotype conferred a
selective advantage for P foraging. When plants were provided
with limited, sufficient and high levels of this immobile nutrient
in the soil, no significant difference was evident in P accumula-
tion in shoot tissues of osaux1 compared to the wild-type control
(Supplementary Figure 6). Rather surprisingly, split nutrient
treatments (where sufficient or high P were provided in the top
50% soil volume) revealed that osaux1 accumulated less P in
shoot tissue compared to the wild type (Supplementary Figure 6).
We conclude, based on the latter observations, that OsAUX1must
also control other root traits of importance for soil P acquisition.

OsAUX1 promotes root hair growth in low phosphate condi-
tions. Root hairs play an important role in accessing immobile
nutrients like P from the soil. We therefore examined whether

mutating OsAUX1 disrupted root hair development, in addition to
root angle. We initially observed that both osaux1 mutant alleles
retained the ability to form root hairs (Fig. 3a and Supplementary
Figure 7). However, closer examination revealed that mutant root
hairs were shorter than wild type (Fig. 3b and Supplementary
Figure 7). The reduced root hair length in osaux1 phenocopies the
previously reported root hair elongation defect in Arabidopsis
aux1 mutant alleles17,18 and reveals that this growth response
represents a highly conserved AUX1-dependent process.

External phosphate availability has been reported to control
root hair length in several plant species11. We also observed that
external P concentration had a major effect on wild-type rice root
hair length (Fig. 3a, b and Supplementary Figure 7), which
increased more than threefold to >500 μm under the most
limiting nutrient conditions. In contrast, the osaux1-1;1 and
osaux1-1;3 alleles either exhibited a highly attenuated root hair
response or this was completely abolished, respectively (Fig. 3b
and Supplementary Figure 7). The marked reduction in root hair
length of the osaux1 alleles (particularly under P limiting
conditions) will negatively impact their ability to forage for P in
soil. Root hairs account for up to 90% of P uptake19, and the
benefits of increased root length in the top soil profile is more
than canceled by the loss of surface area induced by shorter root
hairs considering that 91% of the total root surface area is
contributed by hairs20.

Root auxin response is elevated by low phosphate and
OsAUX1. The observed functional link between OsAUX1 and
root hair elongation response to P deficiency suggests roots
employ auxin as a signal during this important adaptive response.
To directly test whether auxin levels are elevated in rice roots
under P limiting conditions, we grew wild-type plants

WT

aux1-1;1

aux1-1;3

W1 W2 W3 W4

Fig. 2 MicroCT imaging reveals OsAUX1 controls root angle in soil.
Comparison of root angles from X-ray CT images of soil grown wild-type
(WT), osaux1-1;1 and osaux1-1;3 roots at 1-, 2-, 3-, and 4-week-old stages
(denoted W1–4). Scale bar represents 2 cm
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Fig. 3 OsAUX1 promotes root hair growth at low external P levels. a 9-day-
old WT, osaux1-1;1and osaux1-1;3 seedlings were grown for 6 days in
hydroponics at three different P concentrations. Scale bar 1 mm. b
Quantitation of RH length in WT, osaux1-1;1and osaux1-1;3 mutants reveal
low P. Each bar represents the average length of 30–60 fully elongated RH
on >10 nodal roots. *, **, and *** indicate significant difference p value
<0.05, 0.001, and 0.0001, respectively. Error bars mean ± SE, n= three
biological replicates and p values were calculated by Student’s t test
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hydroponically under low external P supply, then surgically
excised root tips and root hair zones and measured levels of the
major form of auxin, indole-3-acetic acid (IAA) using GC-MS/
MS (see “Methods”). Hormone quantification revealed IAA levels
were indeed elevated in wild-type root tip and root hair zone
under low external (compared to high) P conditions (Supple-
mentary Figure 8).

To visualize if low external P conditions triggered an auxin
response, rice reporter lines encoding the auxin responsive
reporter DR5:VENUSX3 were created (see “Methods”). We
monitored changes in rice root auxin response to external P
levels employing two forms of laser scanning microscopy (see
Methods). Multi-photon microscopy was used to image deep
inside rice root tissues, revealing that the DR5:VENUSX3 reporter
signal was elevated in root cap and epidermal cells when grown
under low external P (versus high P) conditions (Fig. 4a, b). In
parallel, confocal microscopy was employed to image root surface
tissues under both external P conditions. A maximal surface
projection image was taken to capture the entire cylindrical root
surface (Fig. 4c–f). This revealed low DR5:VENUSX3 auxin
response expression in root surface tissues grown in high external
P (Fig. 4d), but under low external P conditions reporter activity
was strongly upregulated in all root epidermal cells between the
apex and hair zone (Fig. 4c).

Lateral root cap and epidermal tissues have been shown in
Arabidopsis roots to represent the AUX1-mediated conduit for
auxin to be transported “shootward” from the root apex to root
hair zones9. Transgenic rice roots encoding an OsAUX1 promoter
GUS reporter (OsAUX1:GUS) revealed that the rice orthologue
was expressed in lateral root cap and epidermal tissues (Fig. 4g).
To test whether the osaux1-1;3 mutation reduced auxin-
dependent root hair elongation by disrupting “shootward” auxin
transport, we monitored DR5:VENUSX3 reporter expression in
the mutant background (Fig. 4e, f). This revealed DR5:VENUSX3
auxin response expression remained low in root surface tissues
grown in either high or low external P. In the latter case, the DR5:
VENUSX3 reporter was clearly elevated in osaux1-1;3 epidermal
cells close to the root apex, but (unlike wild type) was not
expressed in more distal cells within the elongation and
differentiation zones (Fig. 4e, f). This behavior concurs with
model simulations of auxin transport in root tissues, which reveal
that influx carrier activity is necessary for this hormone signal to
move efficiently from cell to cell9,10. We conclude auxin response
is elevated in root epidermal cells due to this signal being
upregulated at the root apex by low external P, then mobilized to
the root hair zone in an OsAUX1-dependent manner.

Auxin and root hair growth are induced by local phosphate
availability. Given that P is relatively immobile in soil, roots are
likely to employ mechanisms to fine tune their hair length in
response to this nutrient’s heterogeneous distribution. This would
necessitate a local (rather than systemic) signaling solution by
roots to monitor external P availability and then trigger adaptive
responses like hair elongation. To investigate whether root hair
length is regulated by either a local or systemic signaling system,
rice plants were grown employing a split root experimental set-
up, where roots from a single plant were grown in two separate
hydroponic chambers to control external P availability. As
reported above (Fig. 3), control split roots grown under just low
or just high P exhibited long and short root hairs, respectively
(Supplementary Figure 9). Interestingly, when roots from indi-
vidual rice plants were grown simultaneously in high and low
external P conditions, they exhibited short and long root hair
lengths, respectively (Supplementary Figure 9). Hence, root hair
elongation in rice appears to be controlled by local (rather than
systemic) P availability. However, when we performed a split
plate experiment in soil, where seminal roots from the same rice
plant were exposed (at the same time) to replete P and low P
conditions, the latter roots exhibited an attenuated hair elonga-
tion response compared to control roots (Supplementary Fig-
ure 10). This suggests that, while root hair length is strongly
influenced by local P availability, a systemic signal(s) may also
communicate the P status of shoot tissues.

We next examined whether auxin response plays a role in local
and/or systemic signaling mechanisms to P availability using our
split root hydroponic system. As reported above, DR5:VENUSX3
rice split roots grown under just low or just high external P
conditions exhibited high and low reporter signals, respectively
(Fig. 5a, b and Supplementary Figures 11 and 12). Similarly, when
roots from individual rice DR5:VENUSX3 plants were grown
simultaneously in high and low external P conditions, they also
exhibited low and high auxin response reporter expression,
respectively (Fig. 5a, b and Supplementary Figures 11 and 12).
Hence, root auxin response appears to be inversely related to local
P availability, where low levels of this key nutrient triggers an
increase in root epidermal auxin response, which promotes root
hair elongation to better forage for this immobile resource in soil.

Discussion
Our study has uncovered a novel role for OsAUX1 in facilitating
root adaptation to low external P by promoting hair elongation,
thereby helping increase the volume of soil being explored by the

a b c d e f g

LP HP

DR5:VENUS

LP HP

DR5:VENUS aux1-1;3/DR5:VENUS AUX1pro:GUS

LP HP

Fig. 4 Low P increases root hair zone auxin response via AUX1. a, b Two photon laser scanning microscopy images of auxin response reporter DR5:VENUS
(green) fluorescence in transgenic rice seedlings grown at either low (a) or high P levels (b). Inset shows close-up of the distal elongation zone. c–f
Maximum projection confocal images of Z-stacks of DR5::VENUS fluorescence in the roots of wild type (c, d) or osaux1-1;3 (e, f) seedlings grown in either
low (c, e) or high P (d, f). g AUX1pro:GUS lines reveal OsAUX1 root apical expression. Scale bar represents 100 µm
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plant root. Plant physiologists have long known that low P
availability triggers a root hair elongation response in many
species11. Arabidopsis developmental biologists have also
observed two decades ago that auxin and AUX1 promote root
hair elongation17,18. Our current study in rice provides the
experimental evidence that integrates these observations and
stimulated subsequent efforts in the model plant Arabidopsis
thaliana12,13 to develop a mechanistic framework for this adap-
tive response pathway.

The conservation of the AUX1-regulated root hair adaptive
response between model dicot and monocot species provides
confidence that we have uncovered a highly conserved auxin
regulatory mechanism controlling plant responses to external P

availability. A central role for auxin has been further sub-
stantiated by the observation that Arabidopsis mutants either
disrupting auxin response (e.g., arf19), synthesis (e.g., taa1), or
degradation (e.g., dao1) also modify the P deficiency-induced root
hair elongation response12. In addition, hormone quantification,
pharmacological treatment, and reporter studies in rice and
Arabidopsis have revealed that P-deficit elevates IAA levels and
response (Supplementary Figure 8)12,13, triggering enhanced
auxin responsive gene expression in key root tissues that include
epidermal root hair cells. Targeting AUX1 to just lateral root cap
and epidermal root tissues rescued the aux1 P deficiency root hair
defect, demonstrating the functional importance of the shootward
auxin transport pathway from the root apex via the lateral root
cap to elongation and differentiation zones12. Auxin-inducible
transcripts that exhibit elevated expression in the elongation and
differentiation zones during P-deficit conditions include the
transcriptional factor genes ARF19 and (its targets) RSL2 and
RSL4. Given the recent demonstration that the abundance of
RSL4 exhibits a linear relationship with root hair length21, RSL4
mRNA upregulation by auxin (in response to P deficit) would
promote hair elongation. Collectively, our experimental results
can be placed into a mechanistic framework initiated by auxin
upregulation at the root apex in response to low external P
availability and culminating in upregulation of RSL2 and RSL4 in
the elongation/differentiation zones that enhances root hair
length and P acquisition.

Exactly how low external P availability triggers the upregula-
tion of auxin levels at the root apex has been unclear until now.
Split root experiments in rice and Arabidopsis12 demonstrate that
auxin upregulation triggered by low external P was a local (rather
than systemic) response. The recent elegant demonstration that P
uptake and sensing by a root occurs at the apex22 raises the
intriguing possibility that root cap cells provide a nexus for
integrating information about local external nutrient availability
that generates physiological signals like auxin. Bhosale et al.12

have demonstrated that the auxin biosynthesis gene TAA1 and its
protein is upregulated at the root apex in response to low external
P levels. As a consequence, elevated auxin levels are transported
to other root cells (e.g., epidermal cells) to trigger adaptive
responses designed to enhance local root P acquisition (e.g., root
hair elongation; Fig. 5). The seventeenth century plant anatomist
Grew originally made the connection between plant nutrition and
the root tip23. The present study establishes how auxin serves as
an important signal for P status in the root, linking the root cap
and root differentiation zones employing the auxin influx carrier
OsAUX1, to promote root hair elongation in order to help cap-
ture more P.

Methods
Plant material and growth conditions. Arabidopsis thaliana seeds (Col-0) were
surface sterilized and grown in a growth room under 16 h light (150–200 μmols m
−2 s−1; 23 °C) and 8 h dark cycle (18 °C). Rice (Oryza sativa L. japonica) AUX1 T-
DNA insertion lines osaux1-1;1 and osaux1-1;3 (Dongjin background) and Dongjin
wild-type seeds were provided by Pr G An, Kyung Hee University, Korea24. Rice
plants were grown in 13 cm pots (volume 804 cc) filled with a 1:1 (w:w) ratio of
John Innes No1 (John Inness, Norwich UK): Levington M3 (JFC Monro, Devon,
UK) soil mix, at 28 °C in 12 h light and 12 h dark cycle and regularly irrigated with
plant media25.

AUX1 complementation experiments. cDNA sequences for OsAUX/LAX genes
were PCR amplified from rice root or leaf cDNA libraries, other than OsLAX1
which was obtained from the rice BAC clone AK111849. Each cDNA was initially
cloned into pGEM-T Easy and then the binary vector pMOGORFLAUX114, which
contains the 2 kb promoter region, start codon and the 3′UTR of the Arabidopsis
AUX1 gene. Constructs were then transformed into the Arabidopsis mutant aux1-
22 using the floral-dip method26. Primers used for cDNAs amplification are listed
in Supplementary Table 1. Root growth and gravitropism analyses were performed
on vertical agar plates and quantified as described earlier27.
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Fig. 5 Low P root auxin response is independent of plant P status. a
Maximum projection confocal images of Z-stacks of DR5::VENUS
fluorescence in the seedlings grown initially in high P medium for 7 days
and then transferred to high P (i) for a further 6 days. (ii) and (iii) show
DR5::VENUS fluorescence of split P experiment roots, where 7-day-old high
P roots were split into two halves: one half was grown in high (ii) and the
other in low P medium (iii) for a further 6 days. (iv) Maximum projection
confocal image of 13-day-old low P grown rice root. b Raw integrated
fluorescence intensity quantification of DR5::VENUS roots (from Fig. 5a and
Supplemetary Figure 11). Each bar represents the average raw integral
density of fluorescence intensity of DR5::VENUS under high P, low P to high
P, high P to low P, and low P conditions. Fluorescence intensity of at least 19
roots under low P and high P grown DR5::VENUS seedlings and 10 roots of
split P conditions were used for fluorescence intensity measurement in
three independent replicates. Scale bar represents 50 µm. Student’s t test
was performed to calculate p values
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Characterization of osaux1 root architecture. Two independent T-DNA insertion
mutant lines of Osaux1 were identified using OryGeneDB software28. In line 3A-
51110, the T-DNA was inserted within intron 5, while in line 3A-01770 the T-DNA
was inserted in exon 6 (and termed osaux1-1;1 and osaux1-1;3, respectively). T-
DNA insertions were confirmed using the site-finder approach29. Root growth and
gravitropism analyses were performed on vertical agar plates and quantified as
described earlier27. Root architecture analysis of soil grown plants was performed
using either rhizotrons30 and X-ray microCT16. In the latter case, the germinated
seeds were planted in plastic columns containing sandy loam (Newport) soil. For
phosphate amendment crushed TSP (44% P2O5 in 50mL of deionised water) was
mixed thoroughly with the soil. The amended soil was sieved to <2mm and then
packed in polypropylene columns (5.5 cm diameter, 10 cm height, and 0.23 cm
thick) to a 1.2 g cm−3 density. Columns were microCT scanned at weekly intervals
for 4 weeks using a GE NanoTom CT model. Typical settings were 130 kV, 240 µA,
1080 projections, 73 min total scan time, sample-source distance of 22.7 cm, 27.3 µm
voxel size with a 0.1 mm copper filter. The relatively long scan time (73min) was
used to obtain the best quality X-ray CT images for the sample size. Each sample
received an approximate X-ray dose of 5.9 Gy over the four scans (1.5 Gy each scan)
as estimated by the RadPro X-ray Device Dose-Rate Calculator (McGinnis 2002-
2009). Root systems were segmented from the X-ray CT generated images using
VGStudioMax and measured with VGStudioMax and RooTrak software31.

Root hair assays. Dehusked rice seeds were surface sterilized with 2% bleach and
0.1% Triton for 15 min followed by five washes with sterile water. Seeds were then
germinated on moist Whatman paper for 3 days in dark. Uniformly germinated
seedlings were then transferred on 1/4th strength MS plates (pH 5.6 with 1% agar)
containing 1 µM, 31 µM, or 312 µM P. Low P media were complemented with
equimolar concentration of KCl. Seedlings were grown vertically in 12-inch square
plates in growth chamber maintained at 28 °C with 12 h of light and 12 h of
darkness. After 9 days of growth seedlings were transferred to glass tubes filled with
same media without agar (hydroponic system). Liquid media was changed every
day and root hair growth was recorded on nodal roots of 15 days old seedlings
using a Zeiss stereo zoom microscope (optical zoom ×2.5, digital zoom ×1.2).
Experiments were repeated three times. RH length was measured as the average of
30–60 fully elongated root hairs from one seedling. Data from >10 seedlings were
used to calculate the final RH length.

Split root experiments. Rice seeds (DR5:VENUS3X) were dehusked and were cut
into halves to retain only embryo portions (onwards referred as seeds). Seeds were
then surface sterilized with 50% bleach for 10 min followed by 10 washes with
sterile water. After washing, seeds were dried on sterile Whatman paper for 10 min.
Seeds were germinated for 3 days on vertical ½ MS (Murashige and Skoog) plates
(supplemented with 0.5% phytagel) in a growth chamber maintained at 28 °C
(250–300 µM photons/m2/s). Uniformly germinated seedlings were then trans-
ferred to hydroponic solutions of modified Yoshida medium24 containing 1 µM
(low) P in phytotron growth chamber (16 h day (30 °C)/8 h night (30 °C) photo-
period, 250–300 µM photons/m2/s photon density and ̴̴ 70% relative humidity).
After 7 days of growth in low P (1 µM), 10 low Pi-starved seedlings were split into
two glass tubes filled with low (1 µM) and high (312 µM) P Yoshida medium. The
liquid medium was changed every day and fluorescence images and Z-stacks were
recorded on nodal roots of 13 days old seedlings using Leica SP5 confocal
microcope. All recorded images and Z-stacks were processed in Fiji to generate
maximal surface projection images and to measure raw integrated densities of
fluorescence. The.lif file format was opened in Fiji and all z slices were summed and
duplicated. The duplicated image was used for thresholding to visualize the
maximum fluorescence pixels. After thresholding, each fluorescence pixel was
selected using the ROI manager tool and a ROI number added to that image.
Finally, raw integral densities were calculated using the measurement tool.

Auxin and P measurements in rice plants. Root tip (~1.5mm) and differentiation
zone (next 2mm region) from 15 days old rice seedling grown under low and high P
were excised under a dissecting stereo microscope and frozen immediately in liquid
nitrogen. Twelve–fifteen roots were used per sample with four biological replicates. Five-
hundred picograms of 13C6-IAA internal standard was added to each sample before
purification. Auxin quantification was performed using GC-MS/MS as described ear-
lier32 with minor modifications. P levels in shoot tissues were measured using ICP-MS.

Generation of rice reporter lines. The DR5rev::VENUS fragment was composed of
a generic synthetic promoter with nine repeats of the auxin response element
(AuxRE) motif (TGTCTC) linked to minimal 35S CaMV promoter33,34, driving
the expression of three copies of the YFP VENUS sequence with the nuclear
localization signal N7 from maize35. The construct was inserted into the
pMLBART36 vector to form the DR5rev::3xVENUS construct. The vector was
transformed into rice japonica cultivar 9522 calli using Agrobacterium tumefaciens
strain EHA10537. To create the OsAUX1pro:GUS construct, 1.8 kbp of the OsAUX1
promoter sequence was PCR amplified and cloned into Gateway binary vector
pGWB3, which contains the GUS gene (Supplementary Figure 2). This vector was
then transformed into Agrobacterium. Rice transformation was carried out as
described earlier38.

Two photon laser scanning microscopy (TLSM). Plant seeds were sterilized in
ethanol 70% for 1 min, and then in 40% sodium hypochlorite for 30 min under
agitation. Seeds were transferred to ½ strength MS plates (supplemented with half
strength vitamins; 0.8% agar; pH 5.8). Plates were kept at an angle of 15% from the
vertical in a growth chamber maintained at 25 °C, 60% humidity, and under a 12 h
photoperiod for 3 days. Root tips were counter stained with propidium iodide (PI;
10 µg/ml) for 10 min and were then briefly washed with distilled water thrice. Root
tips were mounted in low melting agarose (0.5%) and were scanned typically using
a two photon laser scanning microscope. The GFP and PI emissions were collected
in separate channels with excitation at 836 nm (Chameleon Ultra II) and 1096 nm
(Chameleon Compact OPO), respectively, with a gain set at 600 nm using 2 PMT
NDD and 2 PMT BiG detectors. All images were processed using Zeiss ZEN
software. For images stack, the auto brightness correction was applied. In some
cases, roots were scanned using Leica SP5 confocal microcope with 1.5 μm step size
for Z-stacks. Maximum projections were generated using Leica SP5 software,

RT-qPCR and reporter imaging. qRT-PCR was performed in three biological and
four technical replicates per sample. Total RNA (2 µg) was used for cDNA
synthesis using transcriptor first-strand cDNA synthesis kit (Roche)14. For GUS
assays, samples were kept immersed in ice-cold 90% acetone with gentle shaking
for 1 h followed by three washes with sodium phosphate buffer pH 7 for 1 h.
Tissues were incubated in GUS staining solution for 3 h at 37 °C14 and images were
taken on a Leica microscope using DIC optics.

Data availability. The authors declare that all data supporting the findings of this
study are available within the manuscript and its supplementary files or are
available from the corresponding author on request.

Received: 9 January 2017 Accepted: 16 March 2018

References
1. Lynch, J. P. Root phenes for enhanced soil exploration and phosphorus

acquisition: tools for future crops. Plant Physiol. 156, 1041–1049 (2011).
2. Lynch, J. P. & Brown, K. M. Topsoil foraging – an architectural adaptation of

plants to low phosphorus availability. Plant Soil 237, 225–237 (2001).
3. Uga, Y. & Yano, M. Control of root system architecture by DEEPER

ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45,
1097–1102 (2013).

4. Sato, E. M., Hijazi, H., Bennett, M. J., Vissenberg, K. & Swarup, R. New
insights into root gravitropic signalling. J. Exp. Bot. 66, 2155–2165 (2015).

5. Maher, E. P. & Martindale, S. J. Mutants of Arabidopsis thaliana with altered
responses to auxins and gravity. Biochem. Genet. 18, 1041–1053 (1980).

6. Estelle, M. A. & Somerville, C. Auxin-resistant mutants of Arabidopsis
thaliana with an altered morphology. Mol. Gen. Genet. 206, 200–206 (1987).

7. Bennett, M. J. et al. Arabidopsis AUX1 gene: a permease-like regulator of root
gravitropism. Science 273, 948–950 (1996).

8. Yang Y., Hammes, U. Z., Taylor, C. G., Nielsen, E. & Schachtman, D. P. High-
affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol. 16,
1123–1127 (2006).

9. Swarup, R. et al. Root gravitropism requires lateral root cap and epidermal
cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7,
1057–1065 (2005).

10. Band, L. R. et al. Systems analysis of auxin transport in the Arabidopsis root
apex. Plant Cell 26, 862–875 (2014).

11. Brown, L. K., George, T. S., Dupuy, L. X. & White, P. J. A conceptual model of
root hair ideotypes for future agricultural environments: what combination of
traits should be targeted to cope with limited P availability? Ann. Bot. 112,
317–330 (2013).

12. Bhosale, R., et al. A mechanistic framework for auxin dependent Arabidopsis
root hair elongation to low external phosphate. Nat. Commun. https://doi.org/
10.1038/s41467-018-03851-3 (2018).

13. Dindas, J., et al. AUX1-mediated root hair auxin influx governs SCFTIR1/
AFB-type Ca2+ signaling. Nat. Commun. 9, 1174 (2018).

14. Peret, B. et al. AUX/LAX genes encode a family of auxin influx transporters
that perform distinct function during Arabidopsis development. Plant Cell 24,
2874–2885 (2012).

15. Zhao, H. et al. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).
Plant Cell Environ. 38, 2208–2222 (2015).

16. Mooney, S. J., Pridmore, T. P., Helliwell, J. & Bennett, M. J. Developing X-ray
computed tomography to non-invasively image 3-D root systems architecture
in soil. Plant Soil 352, 1–22 (2012).

17. Pitts, R. J., Cernac, A. & Estelle, M. Auxin and ethylene promote root hair
elongation in Arabidopsis. Plant J. 16, 553–560 (1998).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03850-4

6 NATURE COMMUNICATIONS |  (2018) 9:1408 | DOI: 10.1038/s41467-018-03850-4 |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-03851-3
https://doi.org/10.1038/s41467-018-03851-3
www.nature.com/naturecommunications


18. Jones, A. R. et al. Auxin transport through non-hair cells sustains root-hair
development. Nat. Cell Biol. 11, 78–84 (2009).

19. Fohse, D., Claassen, N. & Jungk, A. Phosphorus efficiency of plants. II.
Significance of root radius, root hairs and cationanion exchange balance for
phosphorus influx in seven plant species. Plant Soil 132, 261–272 (1991).

20. Bates, T. R. & Lynch, J. P. Stimulation of root hair elongation in Arabidopsis
thaliana by low phosphorus availability. Plant Cell Environ. 19, 529–538 (1996).

21. Datta, S. P., Prescott, H. & Dolan, L. Intensity of a pulse of RSL4 transcription
factor synthesis determines Arabidopsis root hair cell size. Nat. Plants 1, 15138
(2015).

22. Kanno, S. et al. A novel role for the root cap in phosphate uptake and
homeostasis. eLife 5, e14577 (2016).

23. Grew, N. Anatomy of Plants (W. Rawlins, London, 1682).
24. Jeong, D. H. et al. Generation of a flanking sequence- tag database for

activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).
25. Yoshida, S., Forno, D. A., Cock, J. H., Gomez, K. A. Laboratory Manual for

Physiological Studies of Rice 3edn (International Rice Research Institute,
Manila, Philippines, 1976).

26. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-
mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

27. Wells, D. M. et al. Recovering the dynamics of root growth and development
using novel image acquisition and analysis methods. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 367, 1517–1524 (2012).

28. Droc, G. et al. OryGenesDB: a database for rice reverse genetics. Nucleic Acids
Res. 34, D736–D740 (2006).

29. Tan, G. et al. SiteFinding-PCR: a simple and efficient PCR method for
chromosome walking. Nucleic Acids Res. 33, e122 (2005).

30. Price, A. H., Shrestha, R., Piffanelli, P., Lupotto, E. & Casella, L. in
Methodologies for Root Drought Studies in Rice (eds Shashidhar, H. E., Henry,
A. & Hardy, B.) 9–14 (International Rice Research Institute, Los Baños,
Philippines, 2012).

31. Mairhofer, S. et al. RooTrak: automated recovery of 3D plant root architecture
in soil from x-ray micro computed tomography using visual tracking. Plant
Physiol. 158, 561–569 (2012).

32. Andersen, S. U. et al. Requirement of B2-type cyclin-dependent kinases for
meristem integrity in Arabidopsis thaliana. Plant Cell 20, 88–100 (2008).

33. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T. J. Aux/lAA proteins repress
expression of reporter genes containing natural and highly active synthetic
auxin response elements. Plant Cell 9, 1963–1971 (1997).

34. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis
of Arabidopsis. Nature 426, 147–153 (2003).

35. Cutler, S. R., Erhardt, D. W., Griffitts, J. S. & Somerville, C. R. Random GFP::
cDNA fusions enable visualization of subcellular structures in cells of
Arabidopsis at a high frequency. Proc. Natl Acad. Sci. USA 97, 3718–3723 (2000).

36. Heisler, M. G. et al. Patterns of auxin transport and gene expression during
primordium development revealed by live imaging of the Arabidopsis
inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).

37. Hiei, Y. & Komari, T. Agrobacterium-mediated transformation of rice using
immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824–834
(2008).

38. Sallaud, C. et al. Highly efficient production and characterization of T-DNA
plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Genet. 106,
1396–1408 (2003).

Acknowledgements
This work was supported by the awards from the Biotechnology and Biological Sciences
Research Council [grant numbers BB/G023972/1, BB/R013748/1, BB/L026848/1,
BB/M018431/1, BB/PO16855/1, BB/M001806/1, BB/P010520/1]; the European Research
Council FUTUREROOTS Advanced Investigator grant [grant number 294729];
Leverhulme Trust [grant number RPG-2016-409]; Royal Society [grant number
WM130021, NA140281]; Newton International Fellowship (NF140287) and British
Council Newton Bhabha (228144076). This work was also supported by funds from the
University of Nottingham Future Food Beacon of Excellence Nottingham Research and
PhD+ fellowship schemes; the Interuniversity Attraction Poles Program initiated by the
Belgian Science Policy Office [P7/29]; the Swedish Governmental Agency for Innovation
Systems (VINNOVA), and the Swedish Research Council (V.R.) to K.L. We also thank
Roger Granbom (Swedish University of Agricultural Sciences) for technical assistance
and Gabriel Castrillo for commenting on the manuscript text. Part of this work has been
conducted at the Rice Functional Genomics REFUGE platform funded by Agropolis
Fondation in Montpellier, France. We also thank DBT-CREST BT/HRD/03/01/2002.

Author contributions
J.G., R.B., G.H., B.K.P., H.P., S.Z., J.Y., A.D., C.B., K.L., A.P., T.R., A.L., S.M. and C.J.S.
performed experiments and contributed experimental data; J.G., R.B., B.K.P., K.L., T.R.,
P.W., L.D., M.H., C.P., W.L., B.P., C.T.H., J.L., M.W., D.Z., T.P., S.J.M., E.G., R.S. and M.
J.B. designed experiments; and J.G., R.B., G.H., B.K.P., R.S. and M.J.B. wrote the
manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-03850-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03850-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1408 | DOI: 10.1038/s41467-018-03850-4 |www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-018-03850-4
https://doi.org/10.1038/s41467-018-03850-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate
	Results
	Rice root angle is altered by disrupting the OsAUX1 gene
	Phosphorus acquisition efficiency is not improved in osaux1
	OsAUX1 promotes root hair growth in low phosphate conditions
	Root auxin response is elevated by low phosphate and OsAUX1
	Auxin and root hair growth are induced by local phosphate availability

	Discussion
	Methods
	Plant material and growth conditions
	AUX1 complementation experiments
	Characterization of osaux1 root architecture
	Root hair assays
	Split root experiments
	Auxin and P measurements in rice plants
	Generation of rice reporter lines
	Two photon laser scanning microscopy (TLSM)
	RT-qPCR and reporter imaging
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




