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Plant pathogens like virus, bacteria, and fungi incur a huge loss of global productivity.
Targeting the dominant R gene resulted in the evolution of resistance in pathogens,
which shifted plant pathologists’ attention toward host susceptibility factors (or S genes).
Herein, the application of sequence-specific nucleases (SSNs) for targeted genome
editing are gaining more importance, which utilize the use of meganucleases (MN), zinc
finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN)
with the latest one namely clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9). The first generation of genome editing
technologies, due to their cumbersome nature, is becoming obsolete. Owing to its
simple and inexpensive nature the use of CRISPR/Cas9 system has revolutionized
targeted genome editing technology. CRISPR/Cas9 system has been exploited for
developing resistance against virus, bacteria, and fungi. For resistance to DNA viruses
(mainly single-stranded DNA viruses), different parts of the viral genome have been
targeted transiently and by the development of transgenic plants. For RNA viruses,
mainly the host susceptibility factors and very recently the viral RNA genome itself have
been targeted. Fungal and bacterial resistance has been achieved mainly by targeting
the host susceptibility genes through the development of transgenics. In spite of these
successes CRISPR/Cas9 system suffers from off-targeting. This and other problems
associated with this system are being tackled by the continuous discovery/evolution of
new variants. Finally, the regulatory standpoint regarding CRISPR/Cas9 will determine
the fate of using this versatile tool in developing pathogen resistance in crop plants.

Keywords: CRISPR/Cas9, guide RNA, protospacer adjacent motif, genome editing, pathogen- resistance, host
susceptibility factor

INTRODUCTION

Plants are continuously being exposed to various pathogens including bacteria, fungi and viruses
resulting in 20–40% yield loss globally (Savary et al., 2012; Borrelli et al., 2018). Dominant R-gene-
mediated breeding has been the classical approach (Dangl et al., 2013) to achieve resistance against
pathogens, which, due to strong selection pressure, resulted in the evolution of resistance among
pathogens (Vleeshouwers et al., 2011; Win et al., 2012). Host susceptibility factors (or S genes) came
out as alternatives, which are mainly negative regulators of immunity or host proteins, which, upon
manipulation by a pathogen, support their growth (Langner et al., 2018). Over the past few years,
new breeding techniques (NBTs) have been developed as alternatives to classical plant breeding for
crop improvement including pathogen- resistance (Lusser and Davies, 2013; Nelson et al., 2018).
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NBT include the usage of sequence-specific nucleases (SSNs)
such as meganucleases (MNs), zinc finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs), and
clustered regularly interspaced short palindrome repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9), which have
revolutionized targeted modifications of genomes. The
requirement of sophisticated protein engineering rendered
MN, ZFN, and TALEN techniques less practicable.

The CRISPR-Cas9 system initially reported from Streptococcus
pyogenes as class II bacterial adaptive immune system (Langner
et al., 2018) is a two-component system consisting of the
Cas9 nuclease and a customizable single guide RNA (sgRNA)
(Khatodia et al., 2016). Additionally, it requires a protospacer
adjacent motif (PAM) sequence (5′-NGG-3′) to induce double-
stranded break (DSB) at the target site. DSBs can be repaired
either by Homology-Directed Repair (HDR) or more frequently
by non- homologous end joining (NHEJ) (Khatodia et al., 2016).
Due to its error-prone nature, NHEJ leads to small indels
(insertions/deletions) within the target region (Figure 1). This
strategy of the CRISPR/Cas9 system has been exploited in plant
pathology to target the S genes or the viral genomes. In this
context, the mini-review will discuss the recent advances in crop
protection against viral, fungal and bacterial pathogens using
the CRISPR/Cas9 technology, the advantages, limitations, and
possible ways for further improvement of this technology for
better utilization in targeted genome editing.

ACHIEVEMENTS IN PLANT VIRUS
RESISTANCE THROUGH CRISPR/Cas9
TECHNOLOGY

Utilization of the CRISPR/Cas9 system for the viral resistance
has been executed by targeting either the viral genome or the
host susceptibility factors (Table 1). Most of the CRISPR/Cas9
mediated viral resistance have been achieved by targeting the
ssDNA of the geminiviruses (Ali et al., 2015, 2016; Baltes et al.,
2015; Ji et al., 2015) with mono- or bi-partite genome containing
the genes encoding proteins required for viral replication,
movement, and suppressor of host defense machinery (Sharma
and Prasad, 2017). Majority of the reports of targeting viral
genes using CRISPR/Cas9 are either of transient type or through
the development of transgenics in model plants like Nicotiana
benthamiana and Arabidopsis thaliana.

The first report of exploitation of CRISPR/Cas9 system for
geminivirus resistance came from Baltes et al. (2015) and Ji
et al. (2015). Ji et al. (2015) first utilized the CRISPR/Cas9
system to develop beet severe curly top virus (BSCTV) resistance
in Arabidopsis and N. benthamiana plants overexpressing
sgRNA-Cas9. Baltes et al. (2015) demonstrated that transgenic
N. benthamiana plants constitutively expressing Cas9 and
sgRNA-Cas9 exhibit enhanced resistance against bean yellow
dwarf virus (BeYDV) resulting in reduced viral load and
symptoms.

Ali et al. (2015) delivered guide RNAs in Cas9 expressing
N. benthamiana via tobacco rattle virus (TRV) vector targeting
the viral capsid protein (CP), the RCRII motif of the replication

protein (Rep) and the intergenic region (IR) of tomato yellow
leaf curl virus (TYLCV). Guide RNA targeting the stem-
loop sequence within the origin of replication in the IR was
found to be the most effective. As the stem-loop sequence
of the origin of replication in the IR is conserved in all
geminiviruses, this system also provided resistance to other
geminiviruses like a monopartite beet curly top virus (BCTV)
and the bipartite Merremia mosaic virus (MeMV). Ali et al.
(2016) further extended this work to show that targeting the
non-coding IR results in durable resistance as it restricted the
generation of virus variants capable of replication and movement,
which was not achievable by targeting the coding sequences
of geminiviruses. This observation is of great importance for
future researchers while targeting the viral genome for long-term,
durable resistance against viruses. This work also demonstrated
successful utilization of the CRISPR/Cas9 system to develop
resistance against Cotton leaf curl Kokhran virus (CLCuKoV).

As Cas9 from S. pyogenes can only edit double-stranded DNA,
its initial application was limited to target the DNA viruses
alone. Search for RNA editing nucleases led to the discovery of
FnCas9 from Francisella novicida (Hirano et al., 2016; Green
and Hu, 2017) and LwaCas13a (previously known as C2c2)
from Leptotrichia wadei (Abudayyeh et al., 2017; Green and Hu,
2017). The first report of direct targeting of the genome of RNA
viruses came from Zhang et al. (2018). The N. benthamiana
and Arabidopsis plants expressing FnCas9 and sgRNA specific
for cucumber mosaic virus (CMV) or tobacco mosaic virus
(TMV) showed a significant reduction in virus accumulation
and weakened symptom development. More importantly, the
resistance was heritable, and the resultant progenies exhibited
significantly reduced virus accumulation.

The other RNA endonuclease Cas13a has dual functions:
processing of pre- CRISPR RNAs (crRNAs) and sequence-
directed endonucleolysis of the target single-stranded RNA
(Khan et al., 2018). Aman et al. (2018) employed CRISPR/Cas13a
system in N. benthamiana to interfere with the RNA genome
of turnip mosaic virus (TuMV). Targeting the HC-Pro and GFP
sequences provided improved resistance than targeting the coat
protein (CP) sequence. Successful multiplex targeting of the viral
genome by utilization of the inherent ability of Cas13a to process
the poly crRNA into individual crRNAs has also been exhibited
(Aman et al., 2018). Although the RNA knockdown efficiency
of another Cas13 family, namely Cas13b is greater than that of
the Cas13a (Cox et al., 2017; Ying, 2018), there is no report yet
regarding its utilization in a plant system.

Before the discovery of RNA-guided RNA editing systems,
the only way to combat the RNA viruses was to target the host
susceptibility factors for viral infection such as the eukaryotic
translation initiation factor 4E (eIF4E), eIF(iso)4E, and eIF4G
(Sanfacon, 2015). The eIF4E from plants was reported as a crucial
host susceptibility component for viral infection and forms the
largest group of recessive virus resistance genes in monocots and
dicots (Ruffel et al., 2006; Hofinger et al., 2011). The eIF4E and
eIF(iso)4E from tomato and melon exhibited recessive resistance
against viruses (Mazier et al., 2011; Rodriguez-Hernandez et al.,
2012). Targeting eIF4E of cucumber within non-homologous
regions of exons 1 and 3 resulted in enhanced resistance against
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FIGURE 1 | The CRISPR/Cas9 targeting and subsequent non- homologous end joining (NHEJ) process exploited for development of pathogen resistance in plants.
SgRNA, single guide RNA.

potyviruses such as cucumber vein yellowing virus, zucchini
yellow mosaic virus and papaya ringspot mosaic virus-W in
homozygous T3 lines (Chandrasekaran et al., 2016).

In a similar genome editing approach using CRISPR/Cas9
technology, Pyott et al. (2016) targeted the eIF(iso)4E locus
in Arabidopsis thaliana. The resulting genome edited plants
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TABLE 1 | Major applications of CRISPR/Cas9 technology for viral, fungal, and bacterial resistance in plants.

Resistance against
(name of the organism)

Target gene/intergenic region Function of the gene/intergenic
region

Plant species Reference

Viral resistance

BSCTV CP, Rep, and IR Rolling circle replication Nicotiana benthamiana
and Arabidopsis
thaliana

Ji et al., 2015

BeYDV Rep binding site, hairpin, invariant
nonanucleotide sequence within the
replication stem loop and Rep motifs I,
II, and III

Rolling circle replication Nicotiana benthamiana Baltes et al., 2015

TYLCV, BCTV, MeMV CP, RCR II motif of Rep and IR Rolling circle replication Nicotiana benthamiana Ali et al., 2015

CLCuKoV, MeMV, TYLCV CP, Rep, and IR Rolling circle replication Nicotiana benthamiana Ali et al., 2016

TuMV GFP, HC-Pro, CP Viral replication Nicotiana benthamiana Aman et al., 2018

CMV, TMV ORF1, 2, 3, CP and 3′ UTR Viral replication Nicotiana benthamiana
and Arabidopsis
thaliana

Zhang et al., 2018

CVYV, ZYMV, PRSV-W eIF4E Host susceptibility factor for viral
translation

Cucumis sativus Chandrasekaran
et al., 2016

TuMV eIF(iso)4E Host susceptibility factor for viral
translation

Arabidopsis thaliana Pyott et al., 2016

RTSV eIF4G Host susceptibility factor for viral
translation

Oryza sativa var. indica
cv. IR64

Macovei et al., 2018

Fungal resistance

Powdery mildew (Blumeria
graminis f. sp. tritici)

TaMLO-A1 Host susceptibility (S) gene involved
in powdery mildew disease

Triticum aestivum Wang et al., 2014

Powdery mildew (Oidium
neolycopersici)

SlMlo1 Host susceptibility (S) gene involved
in powdery mildew disease

Solanum lycopersicum Nekrasov et al., 2017

Powdery mildew (Oidium
neolycopersici)

Exon-2, SlPMR4 Host susceptibility (S) gene involved
in powdery mildew disease

Solanum lycopersicum Koseoglou, 2017

Rice blast disease
(Magnaporthe oryzae)

OsERF922 Transcription factor involved in
multiple stress responses

Oryza sativa L. japonica
(var. Kuiku131)

Wang et al., 2016

Bacterial resistance

Bacterial blight (Xanthomonas
oryzae pv. oryzae)

SWEET13 Sucrose transporter Oryza sativa Zhou et al., 2015

Pseudomonas syringae,
Xanthomonas gardneri, X.
perforans, Phytophthora
capsici

Exon-3, SlDMR6–1, Susceptibility factor in
Pseudomonas syringae pv. tomato
or Phytophthora capsici infection

Solanum lycopersicum de Toledo Thomazella
et al., 2016

Pseudomonas syringae pv.
tomato DC3000

SlJAZ2 Co-receptor for virulence factor
coronatine (COR)

Solanum lycopersicum Ortigosa et al., 2018

Fire blight (Erwinia amylovora) DIPM-1, 2, 4 Host susceptibility factor for fire
blight disease

Malus domestica Malnoy et al., 2016

BSCTV, beet severe curly top virus; BeYDV, bean yellow dwarf virus; TYLCV, tomato yellow leaf curl virus; BCTV, beet curly top virus; MeMV, Merremia mosaic virus; TRV,
tobacco rattle virus; CLCuKoV, cotton leaf curl Kokhran virus; TuMV, turnip mosaic virus; CMV, cucumber mosaic virus; TMV, tobacco mosaic virus; CVYV, cucumber vein
yellowing virus; ZYMV, zucchini yellow mosaic virus; PRSV-W, papaya ring spot mosaic virus-W; RTSV, rice tungro spherical virus; CP, coat protein; Rep, replication initiator
protein; IR, intergenic region; GFP, green fluorescent protein; HC-Pro, helper component proteinase silencing suppressor; ORF, open reading frame; UTR, untranslated
region; eIF4E, eukaryotic translation initiation factor 4E; eIF4G, eukaryotic translation initiation factor 4G; MLO, mildew resistant locus O; ERF922, ethylene responsive
factor; SWEET, sugar will eventually be exported transporter; DMR6, Downy mildew resistance 6; PMR4, Powdery Mildew Resistance 4; JAZ2, Jasmonate ZIM-domain 2;
DIPM-1, 2, 4, DspE-interacting proteins of Malus 1, 2, 4.

were resistant toward TuMV. Segregation of CRISPR/Cas9
transgene was observed in the T2 generation, and the resulting T3
homozygous lines exhibited morphologically normal phenotype.
Macovei et al. (2018) developed tungro disease resistance [causal
agent: rice tungro spherical virus (RTSV)] in susceptible rice
cultivar IR64 by targeting translation initiation factor 4 gamma
(eIF4G) gene.

The advantage of targeting host susceptibility genes is that
it results in recessive resistance, which is more durable than

dominant R gene-mediated resistance. The probable reason for
this is that viruses endure a lower selection pressure impeding
their evolution (Borrelli et al., 2018). A problem in targeting the
susceptibility genes is that they are also required for translation
of the host cells. Hence, although editing of eIF4E results in
potyvirus resistance in lettuce, it also impairs with the physiology
of the plant (Abdul-Razzak et al., 2009). In another study,
disruption of OsSEC3A by CRISPR/Cas9 in rice resulted in
enhanced resistance to Magnaporthe oryzae, but it also impaired
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the normal growth of the plant resulting in a dwarf phenotype
(Ma et al., 2018).

DEVELOPMENT OF FUNGAL
RESISTANCE VIA CRISPR/Cas9
TECHNOLOGY

Fungal resistance via CRISPR/Cas9 were mainly achieved till
date by targeting the S genes like mildew resistance locus
O (MLO), rice Ethylene Response Factor 922 (Table 1). The
mildew resistance locus O (MLO) is the most widely known S
gene locus. Since its identification in 1942 (Jørgensen, 1992),
several mutants have been generated to provide resistance against
powdery mildew in barley. MLO encodes a seven transmembrane
domain-containing calmodulin binding protein located at the
plasma membrane (Kim et al., 2002). Its role in susceptibility
toward powdery mildew disease in monocot and dicot plants has
also been confirmed (Kusch and Panstruga, 2017). Wang et al.
(2014) targeted all three homoeoalleles- MLO-A1, MLO-B1, and
MLO-D1 by TALEN and TaMLO-A1 allele of exon 2 of bread
wheat using CRISPR/Cas9 technology. Both the approaches were
successful in generation of heritable resistance against powdery
mildew caused by Blumeria graminis f. sp. tritici.

Powdery mildew in tomato is caused by Ascomycete fungus
Oidium neolycopersici (Jones et al., 2001). Tomelo, a non-
transgenic tomato variety resistant to O. neolycopersici has
been developed by Nekrasov et al. (2017) using CRISPR/Cas9
technology. Targeting the SlMlo1 locus by two sgRNAs resulted in
the deletion of 48 bp in the said locus. Segregation of T-DNA was
achieved by selfing of the T0 transformants, which was further
confirmed by whole-genome Illumina sequencing. Besides MLO,
other S genes associated with powdery mildew have also been
identified from Arabidopsis. One such example is Powdery
Mildew Resistance 4 (PMR4) which encodes for a callose synthase
(Huibers et al., 2013). Koseoglou (2017) targeted its ortholog in
tomato SlPMR4 using CRISPR/Cas9 technology- deletion and
rare inversion mutation were observed in the targeted exon-2.
The resulting T2 progenies exhibited partial resistance against
O. neolycopersici.

Rice OsERF922 encodes an APETELA2/ethylene response
factor (AP2/ERF) type transcription factor, which is strongly
induced by M. oryzae (Liu et al., 2012). The identification of
specific ERFs as negative regulators of plant immunity made
them potential targets for genome editing (Langner et al., 2018).
Targeting the OsERF922 gene using CRISPR/Cas9 technology
in rice showed resistance to blast disease. The T2 mutant lines
were similar to the wild-type rice plants with regard to several
agronomic traits (Wang et al., 2016).

DEVELOPMENT OF RESISTANCE
AGAINST BACTERIA USING
CRISPR/Cas9 TECHNOLOGY

Compared to viral and fungal resistance few reports are available
for utilization of CRISPR/Cas9 to combat bacterial diseases of

crops (Table 1). The γ-proteobacterium, Xanthomonas oryzae
pv. oryzae utilizes type III transcription-activator-like effectors
(TALEs) to induce host gene expression resulting in host
susceptibility. OsSWEET13, a sucrose transporter gene was
identified as a susceptibility gene for X. oryzae pv. oryzae
effector protein, PthXo2. Transfer of the OsSWEET13 allele
from indica rice IR24 to japonica rice Kitaake conferred
disease susceptibility, whereas, mutations in the allele via
CRISPR/Cas9 conferred resistance to bacterial blight (Zhou et al.,
2015).

DMR6 (Downy mildew resistance 6) functions as a negative
regulator of plant defense (Zeilmaker et al., 2015; Langner
et al., 2018). de Toledo Thomazella et al. (2016) demonstrated
that DMR6 ortholog SlDMR6–1 is upregulated in tomato
during infection with Pseudomonas syringae pv. tomato or
Phytophthora capsici (Langner et al., 2018). Targeting exon-
3 of SlDMR6–1 resulted in mutated plants with a truncated
version of SlDMR6 showing broad-spectrum resistance against
Xanthomonas gardneri, X. perforans, P. syringae, and P. capsici
(de Toledo Thomazella et al., 2016; Langner et al., 2018).

Pseudomonas syringae pv. tomato (Pto) DC3000 is the
causal agent of tomato bacterial speck disease. It produces
coronatine (COR) which induces stomatal opening ensuing
invasion of bacteria. In Arabidopsis, this stomatal response to
COR is dependent on COR co-receptor AtJAZ2 (Jasmonate
ZIM-domain-2). The truncated form of JAZ2 lacking the
C-terminal Jas domain (JAZ21jas) prevent stomatal opening
by COR (Gimenez-Ibanez et al., 2017). Ortigosa et al. (2018)
identified ortholog of AtJAZ2 in tomato (SlJAZ2), and it
was targeted by CRISPR/Cas9 to generate dominant JAZ2
repressor- SlJAZ21jas which prevented COR induced stomatal
opening and provided resistance to biotrophic microbe Pto
DC3000. Their experiment is also an example of successful
uncoupling between the jasmonate (JA) and salicylate
(SA) mediated defense pathways toward necrotroph and
biotroph respectively. Effectual defense against biotrophs
generally leads to increased susceptibility to necrotrophs
and vice versa (Gimenez-Ibanez et al., 2017). As in this
experiment, JA-signaling outside the stomata remained
unaffected, Sljaz21jas plants were also resistant to the
necrotrophic fungi Botrytis cinerea which causes tomato
gray mold.

The enterobacterium Erwinia amylovora causes fire blight
disease in apple and other commercially important Rosaceae
plants (Malnoy et al., 2016). The pathogenicity effector (DspE)
of E. amylovora interacts with four leucine-rich-repeat, receptor-
like serine/theonine kinases produced by DspE-interacting
proteins of Malus (DIPM) genes- DIPM 1, 2, 3, 4 (Borejsza-
Wysocka et al., 2006). Malnoy et al. (2016) utilized the
CRISPR/Cas9 system to target DIPM 1, 2, and 4 genes in apple
protoplast to develop resistance against fire blight disease. The
experiment by Malnoy et al. (2016) also demonstrates successful
direct delivery of CRISPR/Cas9 ribonucleoproteins (RNPs) (pre-
assembled sgRNA/Cas9 complex) into plant protoplasts which
has several benefits like rapid targeting efficiency, improved on-
target and reduced off-target activity (Malnoy et al., 2016; Borrelli
et al., 2018).
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ADVANTAGES AND LIMITATIONS OF
CRISPR/Cas9 TECHNOLOGY

The main advantage of CRISPR/Cas9 technology is its
inexpensiveness and ease of use. Unlike ZFN and TALEN,
which is dependent on protein engineering, synthesis and
validation (Joung and Sander, 2013; Voytas, 2013; Puchta and
Fauser, 2014), here only the guide RNA needs to be designed.
This single guide RNA (sgRNA) provides target-site specificity in
CRISPR/Cas9 system (Jinek et al., 2012). Another advantage of
CRISPR/Cas9 system compared to the first-generation genome
editing techniques is the ability of multiplex genome editing, i.e.,
targeting multiple genes using a single construct (Murugan et al.,
2017; Borrelli et al., 2018). Additionally, using the CRISPR/Cas9
system transgene-free genome edited plants can be obtained
in very few generations (Khatodia et al., 2016; Langner et al.,
2018). The efficiency of CRISPR/Cas9 system relies on the
method of transformation. In plants generally routinely used
methods are Agrobacterium-mediated transformation, biolistic
transformation, and protoplast transformation. To perform
CRISPR based homology-directed repair, the biolistic method
is preferred over the other two methods (Baysal et al., 2016; Shi
et al., 2017). Several factors such as the type of promoter used for
driving the expression of Cas9 (e.g., 35S, rice ubiquitin promoter)
and promoter driving sgRNA (e.g., rice snoRNA U3 promoter,
Arabidopsis U6 promoter) also determines the targeted genome
editing efficiency (Ma et al., 2016).

Like every other technique CRISPR/Cas9 system also has
its limitations. Although less frequent in plants, CRISPR/Cas9
system suffers from off-target mutations (Langner et al., 2018).
This can be tackled by using paired nickases where the RuvC
domain of Cas9 is inactivated. As a result, it creates a nick
instead of a double-strand break at the target site (Khatodia
et al., 2016; Langner et al., 2018). Two nicks induced in close
proximity ultimately produces a double-strand break (Hsu et al.,
2014). In addition, the paired nickase system is also useful in
high-efficiency HDR (Khatodia et al., 2016). The problem of off-
targeting can also be tackled by the use of recently discovered
CRISPR/Cpf1 from Prevotella and Francisella 1 (Cpf1) (Zetsche
et al., 2015; Puchta, 2017; Zaidi et al., 2017) which creates a
staggered double-strand break at the target site. Recent reports
of genome editing by Cpf1 exhibited little to no off-target effects
in rice (Tang et al., 2017; Xu et al., 2017). Additionally, Woo
et al. (2015) reported that when ribonucleoproteins complexes or
RNPs, instead of DNA were transfected into lettuce protoplasts,
no off-target mutations were detected in the genome.

Another factor that limits the utilization of Cas9 is the PAM
specificity. The stringent requirement of NGG motif immediately
after the protospacer element limits targeting of the high AT-
rich genome (Zetsche et al., 2015). The CRISPR/Cpf1 system
mentioned earlier is also useful in this regard. Cpf1 recognizes
a T-rich PAM sequence 5′-TTTN-3′ (or 5′-TTTV-3′; V = A,
C, or G, in some cases) instead of 5′-NGG-3′. Cpf1 generates
a staggered double-strand break with cohesive ends, which can
also be useful for increasing the HDR efficiency (Zaidi et al.,
2017). To tackle the problem of PAM specificity mutations have

also been generated in the PAM-interacting domain of wild-type
SpCas9 (Kleinstiver et al., 2015) which recognize alternative PAM
sequences like NGCG, NGAG (Anders et al., 2016; Langner et al.,
2018).

FUTURE PERSPECTIVES

Targeted genome editing by CRISPR/Cas9 can yield desired
disease resistant traits within a very short period which cannot be
achievable by traditional breeding methods (Borrelli et al., 2018;
Langner et al., 2018). When resistance achieved via dominant R
genes is amenable to be overcome by the adaptive potential of the
pathogens, targeting the host susceptibility factors seems to be a
smarter alternative. The availability of the genome sequences of
economically important crops and their transcriptomics datasets
can be useful in the identification of new S genes (Zaidi
et al., 2018). However, the CRISPR/Cas9 technology is still in
its juvenile phase- field trial of the genome edited crops is
limited (Shi et al., 2017) which will be essential to check the
durability of the incurred pathogen resistance. The regulatory
issues regarding genome edited crops will play an important
role in this regard. The United States Department of Agriculture
(USDA) does not regulate genome edited plants which could
otherwise have been developed through traditional breeding
techniques (Jaganathan et al., 2018). On the other hand, in the
European Union, genome edited crops are currently subject to
regulations as genetically modified (GM) organisms (Callaway,
2018). Although safety issues regarding the application of
CRISPR/Cas9 technology must be examined by scientific means
and considering the associated practical and societal aspects
(Bechtold, 2018), regulatory standpoint in favor of this promising
technology will assist in its proper dissemination leading to better
crop management.
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