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Background. Light plays a key role in multiple plant developmental processes. It has been shown that root development is
modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the
mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic
acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells.
Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport.
Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the
PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at
some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to
be addressed. Methodology and Principle Findings. Using laser confocal scanning microscopy, and physiological and molecular
genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely
reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where
PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also
accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking
and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its
inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process. Conclusions and Significance.

Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the
presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results,
we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of
auxin efflux carriers, PIN proteins, in response to the light environment.
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INTRODUCTION
As a prominent environmental signal, light plays an essential role

in plant developmental processes including seed germination,

seedling de-etiolation, leaf expansion, stem elongation, phototro-

pism and flowering [1,2]. When germinated in the absence of

light, plants develop long hypocotyls with unexpanded cotyledons

and exaggerated apical hooks. In contrast, when grown in the

presence of light, plants develop short hypocotyls and fully

expanded cotyledons. This differential growth in response to light

is essential for plants to survive in the natural environment,

allowing plants to quickly emerge from soil after germination to

initiate photoautotrophic growth. In a shaded environment, it

allows plants to elongate to compete for a limited light source [3].

Light signals are perceived by sensory photoreceptor proteins

including phytochromes for red and far-red lights, cryptochromes

for blue and UV-A light, phototropins and an uncharacterized

photoreceptor for UV-B light [4]. In Arabidopsis, five phyto-

chromes (PHYA-PHYE) have been identified, among which

PHYA and PHYB are two major photoreceptors for far-red and

red light, respectively. Light signaling involves nucleo-cytoplasmic

partitioning of phytochromes [5] and negative regulators such as

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3

ubiquitin ligase involved in 26S proteasome-mediated protein

degradation [6,7]. In darkness, COP1 accumulates in the nucleus

to degrade transcription factors including HY5, HYH, HFR and

LAF, therefore, suppressing the expression of light-regulated genes

[8–13]. On the other hand, light triggers the degradation of COP1

in the nucleus, thereby, activating the expression of light-regulated

genes, and promoting photomorphogenesis. The cytoplasmic-

nuclear partitioning of COP1 is regulated by the multisubunit

COP9 complex (COP9 signalosome or CSN). Loss-of-function

mutations in any CSN components exclude COP1 from nuclear

accumulation in dark [14].

Recent studies suggest that shoot-localized phytochromes regulate

lateral root development [15], and root-localized phytochromes and

cryptochromes regulate phototropic responses and growth of

primary roots [16–19]. Although, it has been shown that light

regulates developmental processes at least in part through cross-talk

with the phytohormone auxin [20,21], the mechanism by which

light and auxin interact to regulate root development is largely

unknown. In plants, indole-3-acetic acid (IAA), a major endogenous

auxin is polarly transported by a specific transport system that
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includes AUX1 and PIN families of auxin influx and efflux carrier

proteins [22–32]. PIN proteins exhibit characteristic asymmetric

localization in the plasma-membrane (PM) of auxin-transporting

cells, determining the direction of auxin flow [33,34]. In Arabidopsis,

at least five PIN genes are expressed in different or overlapping

groups of cells in roots, maintaining an auxin sink and maximum in

the root tip [35,36], generating a lateral auxin gradient in root cap

columella cells upon gravi-stimulation [37], and controlling basipetal

auxin transport in root distal and elongation zones [38–42]. PIN

proteins undergo constitutive recycling between the PM and

endosomes [43–46]. This intracellular trafficking process is rather

dynamic and directly modulated by auxin and environmental factors

such as light and gravity [47–49]. Remarkably, recent studies suggest

that the endocytosis of PIN proteins is highly specified. PIN1 used a

GNOM (GDP/GTP Exchange Factor for ARF GTPase) endosomal

pathway [43,44], while PIN2 used a different pathway involving

SNX1 (sorting nexin) for intracellular trafficking [45,46]. It has been

shown that endocytosis is closely linked to degradation of PIN2 in

root gravitropic response [49]. However, our understanding

underlying intracellular trafficking and turnover of PIN proteins is

still largely limited.

Here we show that light plays an important role in the

maintenance of the PM-localization of the auxin efflux regulator,

PIN2, in root epidermal and cortical cells. In the absence of light,

the steady state level of PIN2 on the PM was greatly reduced, and

PIN2 location in part switched from the PM to vacuoles. We show

that the vacuolar PIN2 was derived from the PM via endocytosis.

We further investigated the mechanism by which PIN2 undergoes

vacuolar internalization, using monochromatic light treatments,

and pharmacological inhibitors and mutants that affect photo-

morphogenesis and ubiquitin 26S proteasome.

RESULTS

Auxin efflux regulator PIN proteins undergo

vacuolar accumulation in dark-grown roots
Compared to that of plants grown in continuous light, root radial

expansion and rate of root elongation of plants grown in dark were

reduced by 38% (9065 vs. 148612 mm) and 72% (1.860.1 vs.

6.461 mm/day), respectively (Figs. 1A–C). In addition, root

gravitropic response was greatly reduced in plants grown in dark

compared to the light-grown counterparts (data not shown). The

phenotypes of dark-grown plants mimics that of auxin transport

mutants [36], suggesting that auxin transport may be affected in

plants grown in dark. To test this, we measured auxin transport

activities in roots of 5-day-old plants grown either in continuous light

or in dark. Because radial expansion was significantly reduced in the

root tip region of dark-grown plants, which may indirectly affect

auxin transport measurements, auxin transport activities were

normalized, taken into account the differences in root radial

expansion. The normalized data show that root acropetal (base-to-

tip) and basipetal (tip-to-base) auxin transport activities in dark-

grown plants were significantly reduced to 50% and 77%,

respectively, that of light-grown plants (Figs. 1D, E; n = 8, three

replicates, t-test p,0.05). The reduced root basipetal auxin transport

in dark-grown plants was similar to that of light-grown agr1–5

mutant (an allele of pin2 mutants; [50].

To elucidate mechanism by which auxin transport was

significantly reduced in dark-grown roots, we examined the

localization pattern of PIN2 protein, a key regulator of root

basipetal auxin transport [38–42]. Laser confocal scanning

microscopic (LCSM) analysis of a functional PIN2-eGFP fusion

protein driven by the native PIN2 promoter indicated that the

Figure 1. Root growth, auxin transport and intracellular localization of PIN proteins in Arabidopsis plants grown in the presence and absence of
light. (A) A 5-day-old seedling grown under light developed a long root, short hypocotyl and two fully-expanded cotyledons (left); by contrast, a
dark-grown seedling developed a short root, long hypocotyl, two un-expanded cotyledons and an apical hook (right). Arrows marked hypocotyl-root
junction. (B) Root elongation rate was 6.461 and 1.860.1 mm/day for light- and dark-grown plants, respectively (n = 10; repeated three times,
p,0.05). (C) Root diameter was 148612 and 9065 mm for light- and dark-grown seedlings, respectively (n = 10; repeated three times, p,0.05).
Normalized root basipetal auxin transport (D) and acropetal auxin transport (E) in dark-grown plants was 77% and 50% that of light-grown
counterparts (n = 8; repeated three times, p,0.05). (F-K) Shown were median optical sections of root tips of plants grown in light (F, H, I) and dark (G,
I, K), expressing PIN2-eGFP (F, G), PIN1-eGFP (H, I) and PIN7-eGFP (J, K), and counter stained for cell walls with propidium iodide (red). Error bars
represent standard deviations. Scale bars, 2 mm (A); 50 mm (F-K; left panels); 10 mm (F-K; right panels).
doi:10.1371/journal.pone.0001510.g001
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PIN2-eGFP fusion protein was properly localized to the apical end

of root epidermis cells, consistent with previous reports [36,51]. In

root cortical cells, however, PIN2-eGFP exhibited two opposite

polarities, i.e. to the apical end of cells in the proximal region and

to the basal end of cells in the distal region [29,40]. The latter

pattern of PIN2 localization is required to maintain the auxin

maximum in the root tip [52,53] and PINOID protein kinase and

PP2A phosphatase have been shown to play a role in PIN2

polarity in root cortical cells [54].

By contrast, in 5-day-old seedlings grown in dark, PIN2-eGFP was

greatly reduced from the PM and a detectable level of PIN2-eGFP

was accumulated in intracellular compartments resembling vacuoles

in both epidermal and cortical cells (Figs. 1F, G; 2A, B; 4A, B). To

confirm that PIN2-eGFP intracellular compartments were vacuoles,

we carried out differential interference contrast (DIC) microscopic

analysis of root epidermis cells (Figs. 2A, B; middle panels) and

labeling experiments with lysotracker red, a fluorescence dye that

specifically marks acidic endomembrane compartments (Figs. 2C, D;

middle panels). These data collectively confirmed that the intracel-

lular compartments where PIN2-eGFP accumulated in dark-grown,

but not in light-grown plants, were vacuolar compartments.

Immuno-fluorescence labeling of the endogenous PIN2 proteins,

using affinity-purified anti-PIN2 antibodies [50], confirms that the

PIN2-eGFP fluorescence patterns in light- and dark-grown seedlings

represent the patterns of the endogenous protein (Figs. 2E, F).

To determine whether the vacuolar accumulation of PIN2

occurred via a specific or general process, we examined

localization patterns of several other PM-resident proteins. We

observed that several other PIN proteins including PIN1 [32,55]

and PIN7 [36] similarly accumulated in vacuoles of several

different types of root cells of dark-grown seedlings, where PIN

proteins were expressed (Figs. 1H–K). Furthermore, a PM-

localized water channel PIP2A [56] also changed from predom-

inant PM-location in light-grown seedlings to both PM and

vacuolar locations in dark-grown seedlings (Figs. 3C, D; insets).

Surprisingly, the presumptive auxin influx carrier AUX1 did not

significantly alter its intracellular localization in three different

types of cells, root columella, lateral root cap and central pre-

vascular cells of dark-grown seedlings (Figs. 3A, B; insets). The

vacuolar structure, as indicated by the pattern of a deltaTIP-GFP

fusion protein that marks both the PM and tonoplast membrane

[56,57], remained largely unchanged in the meristematic region of

the root grown in dark compared to the light-grown counterpart

(Figs. 3E, F; insets). Taken together, our data suggest that PIN2

vacuolar accumulation in roots of dark-grown seedlings takes place

via a process that is shared by a subset of PM-resident proteins.

Previously, vacuolar-targeted GFP was observed in vacuoles of

dark-grown plants, but not in light-grown plants [58,59]. This

phenomenon was attributed to an impaired vacuolar function,

resulting in GFP accumulation in vacuoles of only dark-grown

plants [58]. In light-grown seedlings, however, vacuolar fluores-

cence was minimized due to rapid degradation of the green

fluorescence protein entering the vacuolar lumen [58,59]. Because

PIN proteins do not appear to contain any recognizable vacuolar

targeting sequences, it is not clear whether PIN2-eGFP vacuolar

accumulation in dark-grown plants was simply due to an impaired

vacuolar function as previously reported for vacuolar-targeted

GFP. Alternatively, the dark-treatment may alter intracellular

distribution of PIN2, promoting sorting from late endosomes to

vacuoles and subsequent accumulation in vacuolar lumen due to

reduced vacuolar function. To distinguish these possibilities, we

tested intracellular PIN2-eGFP localization in a homozygous det3-

1 mutant, in which the vacuolar H+-ATPase activity was impaired,

resulting in reduced vacuolar function [60]. We found that in the

light-grown det3-1 mutant, although a slightly elevated level of

PIN2-eGFP was detected in diffuse and punctate structures in the

cytoplasm compared to the wild type plants, PIN2-eGFP was

mainly restricted to the PM (Figs. 4A, C). By contrast, in the dark-

grown det3-1 plants, strong PIN2-eGFP signals were detected both

in the vacuolar compartments and at the PM (Fig. 4D). These

patterns were drastically different from the weak PIN2-eGFP at

the PM and in the vacuoles of the wild type plants grown in dark

(Fig. 4B), suggesting that protein degradation in the vacuolar

Figure 2. PIN2-eGFP vacuolar accumulation in dark-grown plants. (A)
PIN2-eGFP (green) asymmetric localization at the apical plasmamem-
brane (PM) of root epidermis cells of 5-day-old light-grown plants (left;
inset). No vacuolar accumulation of PIN2-eGFP was observed by DIC
imaging (middle and right; insets). (B) In dark-grown seedlings, PIN2-
eGFP PM-localization was greatly reduced (left; inset) and a detectable
level of PIN2-eGFP accumulated in vacuolar compartments (middle and
right; insets). (C, D) Lysotracker red (red) labeling of vacuolar
compartments in root epidermis cells of light-grown (C; middle) and
dark-grown (D; middle) plants. PIN2-eGFP only accumulated in vacuoles
of dark-grown plants (C, D). Insets were close-up images. (E, F) Immuno-
fluorescence labeling of the endogenous PIN2 protein in light-grown
and dark-grown wild type plants. The endogenous PIN2 protein was
localized to the apical end of root epidermal cells of a 5-day-old light-
grown plant (E; red). In 5-day-old dark-grown plants, PIN2 was greatly
reduced from the PM, and localized in vacuolar compartments (F; red).
Scale bar, 50 mm (A, B), 10 mm (C–F).
doi:10.1371/journal.pone.0001510.g002

Light Regulation of PIN2

PLoS ONE | www.plosone.org 3 January 2008 | Issue 1 | e1510



compartments still took place so that PIN2-eGFP did not

accumulate to a high level in the vacuoles of dark-grown wild

type plants. Our data collectively support the alternative

hypothesis that, unlike vacuolar-targeted GFP, PIN2-eGFP

vacuolar accumulation was likely caused by a combination of

increased vacuolar targeting and reduced vacuolar function in

dark-grown wild type plants. However, our data do not rule out

the possibility that vacuolar targeting of PIN2-eGFP at a reduced

magnitude may also take place in light-grown plants.

PIN2 undergoes vacuolar accumulation in light-

grown seedlings after shift to dark via PM-derived

endosomes
It has been previously shown that PIN2 undergoes constitutive

cycling between the PM and endosomal compartments [45,46,

61,62]. However, vacuolar targeting of PIN2 protein has not been

described so far. To gain insights of the mechanism underlying PIN2

intracellular distribution, we tested whether PIN2 accumulates to

Figure 3. Localization of AUX1-YFP, PIP2A-GFP and deltaTIP-GFP in light- and dark-grown plants. AUX1-YFP was mainly localized to the basal PM
of lateral root cap and central pre-vascular cells, and to the PM of root columella cells in both light-grown (A) and dark-grown (B) seedling roots.
PIP2A-GFP was predominantly on the PM of all root cells, except that it was excluded from the quiescent center and surrounding initial cells, of light-
grown plants (C). In dark-grown seedlings, a detectable level of PIP2A-GFP accumulated in vacuolar compartments (D). deltaTIP-GFP labeled both the
PM and tonoplast membrane of root cells of light-grown (E) and dark-grown (F) plants. Shown in right and insets were close-up images. Scale bars,
50 mm (left), 25 mm (right).
doi:10.1371/journal.pone.0001510.g003

Figure 4. Enhanced PIN2-eGFP vacuolar accumulation in dark-grown det3-1 mutant. PIN2-eGFP was slightly enhanced in diffuse and punctate
cytoplasmic structures in light-grown det3-1 mutant, compared to the eir1-1 control plant (A, C). In dark-grown det3-1 mutant, a high level of PIN2-
eGFP was detected both at the PM and in vacuolar compartments, compared to the dark-grown control plant, where PIN2-eGFP was greatly reduced
from the PM and a greatly reduced level accumulated in vacuolar compartments (B, D). Shown were root epidermal cells imaged under identical
confocal settings. Scale bars, 50 mm (left), 10 mm (right).
doi:10.1371/journal.pone.0001510.g004
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vacuolar compartments in light-grown seedlings after a short-term

shift to dark. We found that PIN2-eGFP accumulated in vacuolar

compartments in light-grown plants after shift to dark for a short

period time (Figs. 5A; 6A–D).

Next, we tested whether PIN2 vacuolar accumulation during

the light-to-dark transition requires de novo protein synthesis. We

observed that in the presence of a protein synthesis inhibitor,

cycloheximide, PIN2-eGFP accumulated in vacuolar compart-

ments in light-grown seedlings after shift to dark for 4 hrs (Fig. 5B).

Although our data do not rule out the possibility that some of the

vacuolar PIN2-eGFP may be derived from the biosynthetic

trafficking from the endoplasmic reticulum (ER), these data,

together with the labeling of the vacuolar membrane with an

endocytosis marker, FM4-64, strongly support that vacuolar PIN2-

eGFP was largely derived from the endocytic trafficking from the

PM (Figs. 5A, B).

To demonstrate that vacuolar PIN2-eGFP was derived from the

PM via endocytic vesicle trafficking, we pulse-labeled 5-day-old

light-grown PIN2-eGFP seedlings with an endocytic marker, FM4-

64 and examined the kinetics of FM4-64 endocytosis and PIN2-

eGFP vacuolar accumulation in a time course after shifting

seedlings to dark. We observed that both FM4-64 (red) and PIN2-

eGFP (green) fluorescent signals were restricted to the PM at T = 0

(Fig. 6A). However, within 15–30 min in dark, FM4-64 was

internalized and labeled early endosomes (Fig. 6B). We observed

that PIN2-eGFP-positive endosomes partially overlapped with

FM4-64-labeled endosomes (Fig. 6B), in agreement with previous

observations that PIN2-eGFP undergoes constitutive cycling

between the PM and early endosomes [61], and that different

groups of endosomes are involved in the endocytosis of different

PIN proteins in Arabidopsis roots [45,61]. Within 4 to 8 hrs after

transfer to dark, PIN2-eGFP accumulated in vacuolar compart-

ments, whose membrane was now marked by FM4-64 (Figs. 6C,

D). In seedlings grown in continuous light, the kinetics of FM4-64

uptake was indistinguishable from that of the light-to-dark

transitioned seedlings (Figs. 6E–H). However, in contrast to that

of dark-shifted plants, no detectable level of PIN2-eGFP

accumulated in vacuoles of the light-grown seedlings (Figs. 6E-

H). Taken together, our data strongly support that the fraction of

PIN2-eGFP accumulated in vacuoles after the light-to-dark shift

was derived from the PM via endosomal vesicles. Furthermore,

our data suggest that the general endocytic trafficking as indicated

by the uptake of the endocytic marker, FM4-64, was not

significantly altered by the light-to-dark shift (Figs. 6A–H).

Internalization into lytic compartments is often associated with

turnover of PM-resident proteins of both animals and plants

[63,64]. To test whether this is the case, we first examined PIN2

steady state transcript level after light-to-dark transition, using

semi-quantitative and quantitative real-time RT-PCR. These data

indicate that PIN2 steady state transcript level normalized against

the internal Actin gene fluctuated within a small range (5–7%) in

light-to-dark-shifted plants in comparison with plants kept in

continuous light during a 24-hr time course (Figs. 6I, J), suggesting

that transcriptional regulation may not play a significant role in

the intracellular distribution of PIN2-eGFP in response to the light

condition. We then quantified fluorescence intensities of PIN2-

eGFP on the PM of root epidermal cells from 9–11 individual

plants, using a semi-quantitative confocal microscopy [47]. The

results indicate that PIN2-eGFP PM signal remained little

changed in plants kept in the continuous light condition (Fig. 6K;

blue line; n = 168–330; 9–11 individual plants; two independent

experiments; t-test, p.0.5). However, in plants shifted to dark,

PIN2-eGFP signal was gradually reduced over time, reaching 62%

of the initial level in 12 hrs (Fig. 6K; red line; n = 168–466; 9–11

individual plants; two independent experiments; t-test, p,0.0001).

Light signaling is required for the PM-localization

and vacuolar targeting of PIN2
To examine whether PIN2 vacuolar targeting depends on specific

light signaling or results from physiological changes in plants

grown in light and dark, we tested whether photoreceptor-

dependent light signaling is involved, using monochromatic light

treatments. For this, we transferred 5-d-old seedlings grown in

continuous white light to continuous blue (475 nm), red (660 nm)

or far-red (730 nm) light for various lengths of time, and examined

the intracellular distribution of PIN2-eGFP. We observed that,

when white light-grown seedlings were shifted to continuous blue

light (475 nm) for various time, PIN2-eGFP remained at the PM,

similar to that of light-grown seedlings (Fig. 7A, B). Thus, these

observations indicate that blue light was sufficient to maintain the

steady state PIN2 PM-location. On the other hand, when white

light-grown seedlings were transferred to continuous red (660 nm)

or far red (730 nm) light for 4 to 5 hrs, a detectable level of PIN2-

eGFP already accumulated in vacuolar compartments (Figs. 7C,

E), similar to that of light-grown plants after shift to dark. In a

prolonged incubation in continuous red and far red light, a

significant level of PIN2-eGFP accumulated in vacuolar compart-

ments (Figs. 7D, F). These data indicate that phytochrome-

dependent red/far red light signaling was not sufficient to

maintain PIN2-eGFP PM-localization.

We tested whether similar patterns of PIN2 intracellular

distribution occur in excised roots in response to the light

environment. For this, we removed cotyledons from 4-day-old

light-grown seedlings and transferred the excised roots to either

continuous light or dark for 10 hrs, and examined the PIN2-eGFP

localization. These data indicate that PIN2-eGFP was accumu-

lated in vacuolar compartments of excised roots incubated in

absence of light, but not of excised roots incubated in the presence

of light (Figs. 8A, B). These data suggest that excised roots similar

Figure 5. Vacuolar accumulation of PIN2-eGFP did not require de
novo protein synthesis. Five-day-old light-grown PIN2-eGFP seedlings
were pulse-labeled with an endocytosis marker, FM4-64, and pre-
treated on growth media with or without cycloheximide (CHX; 50 mM)
for 30 min. The plants were then shifted to dark and incubated for
4 hrs. In the absence of cycloheximide, PIN2-eGFP (green) accumulated
in vacuolar compartments marked by FM4-64 (red) (A). Similarly, in the
presence of cycloheximide, PIN2-eGFP also accumulated in vacuolar
compartments in plants after shift to dark (B). Shown were root
epidermis cells. Scale bar, 10 mm.
doi:10.1371/journal.pone.0001510.g005
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to intact whole seedlings can sense the light condition in regulating

PIN2 protein intracellular localization.

Because light signaling requires HY5-dependent transcriptional

regulation of light responsive genes, we reasoned that, if HY5-

dependent downstream events are involved in the regulation of

PIN2 PM-localization, we would expect to see reduced PIN2 PM-

localization in light-grown hy5 mutants, similar to that of wild type

plants grown in dark. Furthermore, if this is the case, we would

also expect to see increased PIN2 PM-localization in dark-grown

cop9 mutants, in which light-responsive genes are expressed. As

expected, we observed that PIN2-eGFP PM-localization was

greatly reduced in light-grown hy5-1 mutant plants compared to

the light-grown wild type plants (Figs. 7A, G). On the other hand,

in dark-grown cop9-1 mutants, PIN2-eGFP PM-localization was

significantly enhanced and PIN2-eGFP vacuolar accumulation

was reduced compared with the wild type plants grown in dark

(Figs. 7J, K). In light-grown cop9-1 roots, PIN2-eGFP PM-

localization was only moderately enhanced compared with the

light-grown wild type plants (Figs. 7H, I). Collectively, these data

support a model that HY5-dependent light signaling plays an

Figure 6. Time course of PIN2-eGFP vacuolar targeting. Five-day-old light-grown PIN2-eGFP seedlings were pulse-labeled with an endocytosis
marker, FM4-64, and then transferred to dark (A–D) or kept in light (E–H). Both PIN2-eGFP (green) and FM4-64 (red) were restricted to the plasma
membrane (PM) at T = 0 (A, E). At T = 30 min after transfer to dark, FM4-64 internalized to early endosomes and marked PIN2-eGFP-labeled
endosomes (B). At T = 4 hrs after transfer to dark, PIN2-eGFP accumulated in vacuolar compartments, whose membrane was now labeled with FM4-
64 (C). At T = 8 hrs after transfer to dark, strong vacuolar accumulation of PIN2-eGFP and FM4-64 labeling of vacuolar membrane were visible (D). On
the other hand, FM4-64 labeled endosomes at T = 30 min (F) and vacuolar compartments at T = 4 and 8 hrs in seedling kept in the light condition (E–
H). But, PIN2-eGFP remained at the PM under light (E–H). (A–H) Shown were root epidermal cells. Left, PIN2-eGFP (green); middle, FM4-64 (red); right,
merged images. Scale bars, 10 mm. (I) RT-PCR analysis of steady state PIN2 transcript levels in seedlings grown in continuous light (left) or after light-
to-dark transition (right) for up to 24 hrs. The steady state transcript levels of an Actin gene were used as internal loading controls. (J) Real-time qRT-
PCR analysis of steady state PIN2 levels, normalized against the level of the Actin gene. Shown were the average PIN2/Actin ratios of three
independent experiments. (K) Fluorescence intensities of PIN2-eGFP at the PM of root epidermis cells of light-grown plants kept in light (blue line) or
shifted to dark (red line) for 0, 4, 8 and 12 hrs. Significant differences were observed between light- and dark-shifted plants at T = 4, 8 and 12 hrs
(n = 168–466; Student’s t-test, p,0.0001).
doi:10.1371/journal.pone.0001510.g006
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important role in PIN2 intracellular distribution, maintaining its

PM-location and inhibiting vacuolar targeting.

Because COP9 signalosome is directly involved in the

modulation of the ubiquitin E3 ligase function, which in turn

catalyzes ubiquitination of substrates and marks them for 26S

proteasome-mediated degradation, and, recently, the 26S protea-

some has been implicated in the auxin-regulated PIN2 protein

degradation during gravitropism [49], we tested whether the 26S

proteasome also plays a role in PIN2-eGFP intracellular

distribution in response to the light condition. We observed that

in the presence of MG132, an inhibitor of the 26S proteasome,

PIN2-eGFP vacuolar accumulation was greatly reduced and PM-

localization was enhanced in light-grown seedlings after transfer to

dark for an extended time, in contrast to the mock-treated control

plants (Figs. 7L, M). The effect of MG132 was quite similar to that

of the cop9-1 mutation, suggestive of a role for the 26S proteasome

in PIN2 intracellular distribution.

DISCUSSIONS
In this study, we show that light plays an important role in the

regulation of intracellular distribution of auxin efflux regulator

PIN2 protein, maintaining its PM localization and reducing

Figure 7. Light signaling in the regulation of PIN2 intracellular distribution. (A) PIN2-eGFP was localized at the apical PM of root epidermal cells of
plants grown in continuous white light. (B) PIN2-eGFP asymmetric location in root epidermis cells was maintained in light-grown plants shifted to
continuous blue light (475 nm) for 24 hrs. When light-grown plants were shifted to continuous red light (660 nm) for 5 hrs (C) or 24 hrs (D), PIN2-
eGFP accumulated in vacuolar compartments. When light-grown plants were shifted to continuous far red light (730 nm) for 5 hrs (E) or 24 hrs (F),
PIN2-eGFP accumulated in vacuolar compartments. (G) PIN2-eGFP was greatly reduced from the PM of root epidermis cells of light-grown hy5-1
mutant. PIN2-eGFP was moderately enhanced at the PM in light-grown homozygous cop9-1 mutant (I), compared to that of the wild type plant (H). In
dark-grown cop9-1 mutant, PIN2-eGFP PM localization was enhanced and vacuolar accumulation was reduced (K), compared to that of the dark-
grown wild type plant (J). In the presence of MG132 (50 mM), PIN2-eGFP PM localization was enhanced, while vacuolar accumulation was reduced in
the light-grown plant after shift to dark for 20 hrs (M), compared to the reduced PM localization and increased vacuolar accumulation in the wild type
plant after shift to dark for 20 hrs (L). Shown in right (A–G) were close-up images. Scale bars, 50 mm (A–G, left); 10 mm (A–G, right; H–M).
doi:10.1371/journal.pone.0001510.g007
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vacuolar targeting for protein turnover. Evidence that supports a

role of light signaling in the intracellular distribution of PIN2

protein includes (1) shifting light-grown plants to continuous blue

light did not alter the intracellular distribution of PIN2-eGFP; (2)

shifting light-grown plants to continuous red and far red light did,

however, favor PIN2-eGFP vacuolar accumulation; (3) in dark-

grown photomorphogenetic mutant, cop9-1, we observed a high

level PM-localization and reduced vacuolar accumulation of

PIN2-eGFP; (5) in light-grown hy5 mutant defective in light-

regulated gene expression and in root growth and gravitropic

response [65], PIN2-eGFP PM-localization was greatly reduced;

and (6) in the presence of the ubiquitin 26S proteasome inhibitor,

MG132, PIN2-eGFP PM-localization was maintained and

vacuolar accumulation was reduced in light-grown plants after

shift to dark for an extended time.

In animal and yeast cells, endocytosis and subsequent

degradation of PM proteins and receptors in lysosomes/vacuoles

are used to effectively down-regulate signaling processes associated

with receptors and transport activities of transporters. Endocytosis

and degradation of the yeast general amino acid permease Gal1,

the zinc transporter Zrt1, the magnesium transporter Alr1, the

sugar transporters Mal1, Mal6, Gal2, and Hxt6/7, and the uracil

transporter Fur4 are all promoted when the substrate levels are

elevated [66]. Thus, regulating the activity of transport proteins

via endocytic trafficking is a critical process for organisms to

respond to changing nutrient availability. In plant cells, the boron

exporter BOR1 accumulates to a high level under conditions of B

limitation, mediating B translocation from roots to shoots.

However, when B supply is high, BOR1 undergoes endocytosis

and vacuolar degradation [64]. On the other hand, the

Arabidopsis BKI1 (BRI1 Kinase Inhibitor 1), a membrane-bound

repressor of the brassinosteroid receptor kinase BRI1, is rapidly

endocytosed upon binding with brassinolide [67]. Interestingly,

the auxin efflux carrier PIN2 also undergoes endocytosis and

proteolysis in cells of the upper flank of gravi-stimulated roots [49].

Even though auxin has been implicated in this process [49], the

role of auxin in PIN2 endocytosis and degradation is not fully

understood, since auxin also inhibits PIN2 endocytosis in cells of

the bottom flank of gravi-stimulated roots [47]. It is possible that

the diverse function of auxin may be explained by dosage effects

and/or other factors that are likely involved. So far, vacuolar

targeting and degradation of PIN2 has not been reported.

AGR1/EIR1/PIN2 is a key regulator of root basipetal auxin

transport and gravitropic response [38-41]. Similar to PIN1,

another member of the PIN family of auxin efflux carriers, PIN2

protein undergoes constitutive cycling between the PM and

endosomal compartments in root epidermal and cortical cells

[36,61]. In this study, we show that PIN2, together with several

other PM-resident proteins including PIN1, PIN7 and PIP2A, but

not AUX1, the presumptive auxin influx carrier, is targeted to

vacuolar compartments in the absence of light. Visualization of

PIN2-eGFP vacuolar targeting was in part due to reduced

vacuolar function in plants grown in dark. This is consistent with

previous observations that vacuolar targeted green fluorescence

protein accumulated in vacuolar lumens of only dark-grown

plants. We observed that in dark-grown det3-1 plants that are

defective in vacuolar function due to an impaired H+-ATPase

activity, PIN2-eGFP accumulates to a high level both at the PM

and in vacuoles compared to the dark-grown wild type plants. Our

data do not rule out the possibility that PIN2-eGFP may be

targeted to vacuoles in the presence of light. However, this process

is apparently not favored in plants grown in light.

At present, it is not clear what the immediate regulator is for PIN2

protein vacuolar targeting in the absence of light. Because PIN2 can

be phosphorylated and ubiquitinated [49,54], it is tempting to

speculate that phosphorylation or ubiquination, or both, are likely

involved. Auxin itself may be an alternative regulator of PIN2

endocytosis and vacuolar targeting in the absence of light, since the

shoot-derived auxin transport is also affected in dark-grown plants

(Fig. 1E; [15]). The kinetics of PIN2 endocytosis and vacuolar

targeting in dark was relatively slow compared to the rapid

endocytosis of BKI1 induced by brassinolide [67], but, similar to

the B-induced turn-over of BOR1 transporter [64]. This is suggestive

of involvement of intermediate processes that are likely responsive to

the nutrient availability in case of BOR1 and to the diurnal

fluctuation of the light environment in case of PIN2.

Auxin transport also plays an important role in hypocotyl

elongation in light-grown but not in dark-grown Arabidopsis

plants [20]. Furthermore, Arabidopsis hypocotyls were impaired

in the negative gravitropic response in the presence of continuous

red light [19]. These observations are in agreement with our data

that other PIN proteins are likely involved in these physiological

processes [15,37]. On the other hand, the p-glycoproteins, PGP1

and MDR1/PGP11, have been shown to regulate hypocotyl

elongation in a phytochrome-dependent manner [68,69]. PGP1

and MDR1/PGP11 play a role in auxin transport in hypocotyls

[70,71]. It is imperative to test whether p-glycoproteins are also

subject to the light regulation at the level of intracellular trafficking.

Interestingly, exogenous application of cytokinin and ethylene

restored the negative hypocotyl gravitropic response in the presence

of red light, suggestive of cross-talk between light signaling and

hormonal pathways [19,72,73]. Future work in elucidating the

mechanism by which light regulates intracellular trafficking of auxin

efflux carrier proteins promises to shed new insight in our

understanding of interactions between light and signaling pathways

that impinge on plant developmental processes.

Figure 8. PIN2-eGFP intracellular distribution in excised roots. Four-
day-old light grown PIN2-eGFP seedlings, after removal of cotyledons,
were transferred to either light (A) or dark (B) for 10 hrs. PIN2-eGFP was
localized to the PM in excised roots incubated in the presence of light
(A). By contrast, PIN2-eGFP was accumulated in vacuolar compartments
in excised roots incubated in the absence of light (B). Shown in right
were close-up images. Scale bars, 50 mm (left); 10 mm (right).
doi:10.1371/journal.pone.0001510.g008
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MATERIALS AND METHODS

Materials and Growth Conditions
All seed stocks were obtained from the Arabidopsis Biological

Resource Center at Ohio State University except that PIN1::PIN1-

eGFP (Ler background), PIN2::PIN2-eGFP (eir1-1 background),

PIN7::PIN7-eGFP (Col-0 background) and AUX1::AUX1-YFP

(Col-0 background) lines were kindly provided by Jeffrey Long,

Ben Scheres, Jiri Friml and Malcolm Bennett, respectively. To

generate cop9-1 PIN2-eGFP lines, a cop9-1 heterozygote (Ws; R) was

crossed with PIN2-eGFP (eir1-1; =). F1 plants were self-pollinated

and grown to F2. 30 F2 lines positive for PIN2-eGFP were self-

pollinated and grown to F3. Several F3 lines segregating for the

cop9-1 mutation and homozygous for PIN2-eGFP were selected.

Homozygous cop9-1 lines and wild type siblings were used in the

study. Similarly, to generate hy5-1 PIN2-eGFP and det3-1 PIN2-

eGFP lines, homozygous hy5-1 (Ler-0; R) and det3-1 (Col-0; R) was

crossed with PIN2-eGFP (eir1-1; =). Homozygous F3 lines were

selected based on long hypocotyl phenotype of the hy5-1 mutant in

the presence of light, short hypocotyl phenotype of det3-1 in dark,

and PIN2-eGFP. F3 homozygous mutant lines and wild type

siblings were used in the study.

Seeds were surface sterilized essentially as described previously

(Shin et al., 2005). After imbibition at 4uC for 1–2 days, seeds were

germinated and grown vertically on Petri dishes containing 0.56
Murashige and Skoog basal salts with minimal organic medium

(MSMO; Sigma) supplemented with 1% sucrose and solidified with

0.8% Type E Agar (Sigma). Seed germination was carried out in

climate-controlled growth rooms in a long day condition (16hr light

and 8hr darkness), except stated otherwise, with 22/20uC day/night

temperature and 80 mmol/sec/m2 light intensity. For growth in

monochromatic light, light sources from Norlux Monochromatic

Hex (NHX) solid-state light modules (NorLux Corp) were used. The

intensity of red (660 nm), far-red (730 nm), and blue (475 nm) light

was 10, 4, and 10 mmol/m2/s, respectively.

All chemicals were from Sigma except specified otherwise, and

prepared as stock solutions. DMSO was used to dissolve MG132

(25 mM) and lysotracker red (2 mM; Invitrogen). Propidium

iodide (10 mM; Invitrogen) and N-(3-triethylammoniumpropyl)-4-

(6-(4-(diethylamino) phenyl) hexatrienyl) pyridinium dibromide

(FM4-64; 2.5 mM; Molecular Probes) were dissolved in water. 1-

NAA (10 mM) and IAA (10 mM) were first dissolved in 1N NaOH

and then diluted with water.

Labeling with FM4-64, lysotracker red and

propidium iodide
For uptake studies of FM4-64, 4–5 day-old light-grown seedlings

were first incubated in water containing 2.5 mM FM4-64 for

5 minutes. The seedlings were then transferred back to the growth

medium plate and incubated in either continuous light or darkness

for various length of time before being subjected to laser confocal

scanning microscopic observation. For labeling with lysotracker

red, 4–5 day-old seedlings grown either under continuous light or

in darkness were incubated in water supplemented with lyso-

tracker red (2 mM final concentration) for 1h before laser confocal

imaging analysis. For labeling of cell wall with propidium iodide,

seedlings were incubated in propidium iodide solution (10 mM) for

30 seconds before confocal imaging analysis.

RT-PCR and real-time qRT-PCR
Six-day-old wild type (Col-0) seedlings grown in a long day

condition (16 hrs of light and 8 hrs of dark) were either kept in light

or transferred to dark by wrapping the plates with aluminum foil.

Seedlings were collected and immediately frozen in liquid nitrogen at

the following time points, 0, 2, 4, 8, 12 and 24 hrs after the

treatments. Three biological replicates were collected for each time

point. Total RNA was isolated using RNeasy Plant Mini Kit

(Qiagen). Residual DNA contaminants were removed by treating

RNA samples with RNase-free DNases (20 units). One microgram of

total RNA was used to synthesize the first strand cDNAs with

SuperScript III cDNA Synthesis Kit (Invitrogen). The cDNA

templates were then used in PCR amplification in 20 or 24 cycles

of PIN2 and Actin (AT5G09810) transcripts with the following gene-

specific primers: (PIN2-f) 59 CCGTGGGGCTAAGCTTCT-

CATCT 39; (PIN2-r) 59 AGCTTTCCGTCGTCTCCTATCTCC

39; (Actin-f) 59 CAGTGTCTGGATCGGAGGAT 39 and (Actin-r)

59 TGAACAATCGATGGACCTGA 39. PCR products were

resolved by electrophoresis in 1.2% agarose-ethidium bromide gels.

Gels were scanned by a Typhoon Trio scanner and data were

analyzed by ImageQuant2.1 software (Amersham Biosciences).

Expression of the constitutively expressed Actin gene was used as

an internal control.

For real-time qRT-PCR, PCR reactions were performed in an

optical 384-well plate with an ABI PRISM 7900 HT sequence

detection system (Applied Biosystems, Foster City, CA, USA),

using SYBR Green to monitor dsDNA synthesis. Reactions were

performed in a 10 ml volume contained 5 ml 26 SYBR Green

Master Mix (Applied Biosystems), 1.0 ng cDNA and 1 mm of each

gene-specific primer. PCR cycles were performed as: 50uC for

2 min; 95uC for 10 min; 40 cycles of 95uC for 15 sec and 60uC for

1 min. Data was collected and analyzed using the SDS 2.2.1

software (Applied Biosystems). Primer titration and dissociation

experiments were performed to ensure that no primer dimmers or

false amplicons will interfere with the result. Following the real-

time PCR experiment, CT values for PIN2 gene were normalized

to the CT value of the reference Actin gene.

Laser Confocal Scanning Microscopy (LCSM)
GFP, FM4-64, lysotracker red, propidium iodide and rhodamine

fluorescence was imaged under a Leica TCS SP2 AOBS Laser

Confocal Scanning Microscope (Leica Microsystems, Exton, PA).

For imaging GFP, the 488 nm line of the Argon laser was used for

excitation and emission was detected at 520 nm. For imaging

FM4-64, lysotracker red, propidium iodide and rhodamine,

543 nm line of the Helium/Neon laser was used for excitation

and emission was detected at 590–620 nm. Differential interfer-

ence contrast (DIC) images were captured using the transmission

light detector of the confocal microscope. For semi-quantitative

measurement of fluorescence intensities, laser, pinhole and gain

settings of the confocal microscope were kept identical among

treatments. Digital images were analyzed for fluorescence

intensities using Metamorph 6 (Molecular Devices). Images were

assembled using Photoshop version 5.0 (Adobe Systems).

Immuno-fluorescence localization of PIN2 protein
Immuno-fluorescence labeling of PIN2 was carried out essentially as

described previously [50]. Primary polyclonal antibodies were raised

in rabbits and affinity purified as described before [50]. They were

used as 1:200 dilutions. Secondary antibodies (rhodamine-conjugat-

ed goat anti-rabbit IgG antibodies; Jackson Lab) were used as 1:300

dilutions. After washing with a saline solution for three times 20 min

each, the samples were inspected, using LCSM.

Auxin transport assay
Root basipetal auxin transport was measured essentially as

previously described (Shin et al, 2005). Root acropetal auxin
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transport was carried out as described in Buer and Muday (2004)

with modifications. Briefly, agar blocks of 1 mm in diameter

containing 7.761028 M 3H-IAA (Amersham) was applied at the

hypocotyl-root junction. After incubation for 5 hrs, a 0.5 mm

section of the root close to the agar block was dissected and

discarded. Two consecutive 2-mm segments below the incision line

were then collected separately and pooled from 6 to 10 roots and

placed into glass scintillation vials containing 5 mL scintillation

fluid. Radio-activities in these two pools of root segments were

measured using a Beckman Coulter LS6500 Scintillation counter

(Fullerton, CA, USA). The amount of the radioactivity was the

average of three separate experiments6standard deviation.

Student’s t-test with paired two-tailed distribution was used for

statistical analysis.
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