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Genome-Wide Association study of 
Major Agronomic traits in Foxtail 
Millet (Setaria italica L.) Using 
ddRAD sequencing
Vandana Jaiswal1, sarika Gupta1, Vijay Gahlaut  2, Mehanathan Muthamilarasan3,4, 
tirthankar Bandyopadhyay3, Nirala Ramchiary1 & Manoj prasad3

Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized 
for food and forage globally. Further, it is also considered as a model crop for studying agronomic, 
nutritional and biofuel traits. In the present study, a genome-wide association study (GWAs) was 
performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse 
genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual 
chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency 
of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency 
correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual 
chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). 
GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence 
MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW 
(thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further 
supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified 
in the present study may prove valuable for foxtail millet improvement through marker-assisted 
selection.

Foxtail millet (Setaria italica) is a C4 self-pollinated cereal crop known to be cultivated since 5000–6000 BC on 
the banks of Yellow River in China1. The crop has major agronomic advantages in terms of being relatively cheap 
to cultivate, tolerant to biotic and abiotic stresses1–4, efficient in water use5 and nutritionally rich2,3,6,7. It is a major 
crop in the arid and semi-arid regions of Asia, sub-Saharan Africa and China8 and has increasingly emerged 
as one of the promising climate-resilient crops in the present decade9. Moreover, foxtail millet has a relatively 
smaller diploid genome of 510 Mb10,11 and is considered as an ideal C4 model system for genetic studies involving 
C4 photosynthesis, agronomically important stress responses, bioenergy potential2 among many others. Despite 
possessing such attractive agronomic traits, endeavours to understand, dissect and utilize the genetic diversity 
and generate mapping resources of the crop has been limited12–14. Thus, a better understanding of the genetic 
basis influencing the variation in agronomic traits stands to significantly augment crop improvement strategies 
through conventional breeding or biotechnological approaches.

In foxtail millet, linkage-based QTL mapping has been conducted for several agronomic traits including yield, 
grain weight, flowering days, seed number, etc.15–17. Linkage-based mapping suffers from poor mapping resolu-
tion, less allele mining due to the utilization of biparental population. It is also very tedious to develop mapping 
population. Alternatively, linkage disequilibrium (LD) based genome-wide association study (GWAS) has higher 
mapping resolution due to the utilization of historical recombination events available in a natural population18. 
GWAS has been widely conducted in each of the important crops and model plant systems (like wheat, rice, 
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maize, Arabidopsis) for several traits including agronomic, quality, disease resistance, etc.19–24. However, in foxtail 
millet, only a few studies are available on GWAS25,26.

Advancements in technologies like next-generation sequencing (NGS), genotyping-by-sequencing (GBS) 
and SNP chips further improve the utility of GWAS through the development of high-density genotyping data. 
Further, to deal with false positives due to population structure and multiple testing in GWAS, statistical tools are 
being continually developed27. Given this, high-quality SNPs distributed throughout the foxtail millet genome 
were mined using Double Digest Restriction Associated DNA (ddRAD) sequencing of 142genotypes. GWAS 
was performed for ten agronomic traits using 10367 SNPs through FarmCPU approach. Superior alleles and 
genotypes identified in the present study stand to significantly facilitate the improvement of foxtail millet as a 
viable and efficient climate resilient crop through marker-assisted selection and other useful crop improvement 
programmes in the future.

Results
trait distribution and correlation. Descriptive statistics including minimum, maximum, mean and 
standard deviation revealed a wide range of variability for each of the ten traits across 142 genotypes and summa-
rized in Supplementary Table 1. In summary, a wide range of variability was observed; for example, day of flow-
ering (DOF) ranged from 36–65 with mean 51.4 and a standard deviation of 5.6. Similar variability was observed 
in other traits including plant height (PH; mean ± SD; 138.4 ± 19.6), tiller number (TN; mean ± SD; 4.3 ± 1.2), 
flag leaf length (FLL; mean ± SD; 31.4 ± 6.0), flag leaf width (FLW; mean ± SD; 1.8 ± 0.4), peduncle length 
(PedL; mean ± SD; 19.0 ± 4.4); panicle length (PanL; mean ± SD; 14.6 ± 3.7), tiller maturity (TM; mean ± SD; 
87.8 ± 8.0), grain yield (GY; mean ± SD; 12.8 ± 7.8) and thousand grain weight (TGW; mean ± SD; 2.9 ± 0.6). 
Frequency distribution of each trait in the population was revealed through histograms (Supplementary Fig. 1). 
Pearson’s correlation analysis identified that out of 45 trait-pairs (using ten traits), 22 pairs were significantly cor-
related (Supplementary Table 2). Out of 22 correlations, 14 were positive, and eight were negative. A maximum 
positive correlation (r2 = 0.47) was observed for FLL/FLW. However, TGW and GY were negatively correlated to 
the maximum extent (r2 = −0.716).

Distribution of sNps on foxtail millet chromosomes. GBS enabled the identification of ~30,000 SNPs. 
After filtration (removing markers with missing data <30% and minor allele frequency >5%), 12460 SNPs were 
selected for physical mapping on foxtail millet chromosomes. Out of 12460 SNPs, 10367 were mapped on nine 
major scaffolds of foxtail millet. These major scaffolds (1–9) were considered as nine chromosomes (1–9), respec-
tively, hereafter. The mapped 10367 SNPs covered a total of 399.9 Mb of foxtail millet genome. Thus, the average 
SNP frequency in foxtail millet genome was observed as 25.9 SNPs/Mb. On individual chromosome, the number 
of SNPs ranged from 844 (chromosome 5) to 2153 (chromosome 8) (Table 1). Distribution of SNPs across the 
nine chromosomes is given in Fig. 1. Length of individual chromosome varied from 35.6 Mb (chromosome 7) to 
58.9 Mb (chromosome 9). Maximum SNP density was observed on chromosome 8 (53.0 SNPs/Mb) and mini-
mum on chromosome 9 (16.7 SNPs/Mb).

Linkage Disequilibrium. LD and LD decay distance in all the nine foxtail millet chromosomes is summa-
rized in Table 1. A maximum of 28790 SNP pairs on chromosome 8 showed significant (p < 0.05) LD; however, a 
minimum of 7461 SNP pairs crossed the significance level of LD on chromosome 6. The whole genome average 
maximum r2 value found as 0.46 which dropped to its half (0.23) as distance 177 Kb; thus, considered as whole 
genome LD decay distance and above which LD decayed (Fig. 2). However, for individual chromosome, maxi-
mum LD decay distance was observed for chromosome 4 (357 Kb), followed by chromosome 5 (350 Kb), while 
chromosome 6 (76 Kb; Table 1, Supplementary Fig. 2) showed the minimum LD decay distance.

Genome-wide marker-trait associations. Altogether, 81 marker-trait associations (involving 79 SNPs) 
were identified for ten traits using FarmCPU (Table 2) with p-value < 0.001. Two SNPs (C9.37523364 and 
C7.19705515) were associated with two traits (FLW/TN and GY/TN) each, respectively. Above mentioned 81 
MTAs were present on all the nine chromosomes (Fig. 3). Q-Q plots between observed and expected p-values of 

Chromosome
Number of 
SNPs

Chromosome 
length (Mb)

SNP 
density 
(per Mb)

SNP pair 
in LD 
(p ≤ 0.05)

Average 
LD (r2)

LD decay 
distance 
(Kb)

1 1236 42.0 29.4 21289 0.17 306

2 1216 49.1 24.8 16805 0.12 155

3 872 50.6 17.2 8466 0.09 121

4 970 40.1 24.2 14388 0.19 357

5 844 47.1 17.9 9524 0.14 350

6 923 35.9 25.7 7461 0.09 76

7 1171 35.6 32.9 13627 0.11 136

8 2153 40.6 53.0 28790 0.14 137

9 982 58.9 16.7 8136 0.10 204

Table 1. Distribution of 10367 SNPs on nine foxtail millet chromosomes. A summary of SNP pairs showing 
significant linkage disequilibrium (LD) and LD decay distance on each of the nine chromosomes is also shown.
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association revealed appropriate model fitting involving population structure and kinship (Fig. 3), although the 
power of test statistics was lower in some cases. For DOF, only one SNP (C2.27561819 on chromosome 2) was 
found to be associated. A maximum of 21 MTAs was identified for FLW involving all the chromosomes except 
chromosome 5. Most significant MTA for FLW was present on chromosome 9. For GY, 17 MTAs were identified 
on seven chromosomes (1–3 and 5–8), and most significant MTA was present on chromosome 3. Similarly, for 
TGW, 10 MTAs were identified on five chromosomes (2, 3, 6, 8 and 9). Seven MTAs identified each for three traits 
including FLL (chromosomes 2 and 5), PedL (chromosomes 2, 3, 5, 6, 7 and 9), and TM (chromosomes 3, 5–9). 
Total six, three and two MTAs were identified for TN, PH and PedL, respectively. Summary of above mentioned 
81 MTAs along with chromosomal position, p-value, minor allele frequency and SNP effect is given in Table 2.

High confidence marker-trait association. To eliminate the false positive due to multiple testing, the 
MTAs were filtered following Bonferroni correction. Out of 81 MTAs, only seven MTAs could fulfill Bonferroni 
criteria, thus considered as high confidence MTAs (Table 3). These seven MTAs were associated with three traits 
including FLW (three), GY (two) and TGW (two). All the three MTAs associated with FLW were present on 
chromosome 9, viz., C9.37225457 (p-value 5.06 × 10−18), C9.37443288 (p-value 3.12 × 10−17) and C9.38068016 
(p-value 3.12 × 10−17). Two MTAs associated with GY were present on chromosome 3 (C3.50114070, p-value 
1.77 × 10−7) and chromosome 7 (C7.19705515, p-value 7.82 × 10−7). Similarly, two MTAs associated with TGW 
were found on chromosome 6 (C6.34654923, p-value 9.52 × 10−8) and chromosome 9 (C9.37011889, p-value 
4.98 × 10−9). The above mentioned seven high confidence MTAs were further subjected to downstream analysis 
including the estimation of allele effect, identification of desirable allele and pyramiding effect of desirable alleles.

Figure 1. Single nucleotide polymorphism (SNP) density on nine foxtail millet chromosomes. The x-axis shows 
the interval distance in Mb. Window size to calculate SNP density 100 Kb.

Figure 2. Genome-wide linkage disequilibrium (LD) decay plots. x-axis represents distance (base) between 
SNPs and y-axis represents LD value (r2; 0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Horizontal and vertical lines represent half 
LD and LD decay distance respectively.
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Trait SNP Alleles Chromosome Position −log(p) MAF SNP effect References

DOF C2.27561819 A/G 2 27561819 3.5 0.29 1.99 25,42

FLL

C2.27562491 A/T 2 27562491 3.7 0.14 2.89
17,42C2.27562638 A/C 2 27562638 3.7 0.14 2.89

C2.27726456 G/A 2 27726456 3.1 0.27 2.11

C5.17545821 C/G 5 17545821 3.1 0.11 3.25

17
C5.17545822 A/C 5 17545822 3.1 0.11 3.25

C5.20371666 C/A 5 20371666 3.1 0.11 3.25

C5.20537816 G/A 5 20537816 3.4 0.11 3.38

FLW

C1.6814673 T/C 1 6814673 4.7 0.13 −0.5

—

C1.6814709 A/G 1 6814709 4.7 0.13 −0.5

C1.6814725 A/G 1 6814725 4.7 0.13 −0.5

C1.6825210 T/C 1 6825210 5.1 0.11 −0.41

C1.6898417 G/T 1 6898417 5.5 0.15 0.13

C1.6904134 A/G 1 6904134 3.1 0.12 −0.35

C2.45151497 G/A 2 45151497 4.5 0.3 0.13 17,42

C3.30858639 G/A 3 30858639 4.6 0.06 −0.25 —

C4.17271685 C/G 4 17271685 3.2 0.11 −0.2

—C4.17271782 C/T 4 17271782 3.2 0.11 −0.19

C4.17271815 A/G 4 17271815 3.2 0.11 −0.2

C6.2639715 G/C 6 2639715 3.2 0.11 0.13 —

C7.26457626 G/A 7 26457626 3.4 0.24 −0.13
25

C7.34109248 A/C 7 34109248 5.7 0.07 0.31

C8.29396204 C/T 8 29396204 5.4 0.06 −0.3
—

C8.29469536 G/A 8 29469536 5.6 0.06 0.37

C9.37225457 C/T 9 37225457 17.3 0.12 0.16

—

C9.37443288 C/A 9 37443288 16.5 0.11 −1.84

C9.37523364 C/A 9 37523364 6.0 0.12 −0.68

C9.38068016 C/T 9 38068016 16.5 0.11 −1.84

C9.47023159 A/T 9 47023159 4.6 0.09 0.19

GY

C1.19584662 A/G 1 19584662 4.2 0.11 2.26
—

C1.31690904 G/A 1 31690904 4.6 0.1 −3

C2.2290737 A/T 2 2290737 3.9 0.09 2.43 —

C3.27957942 G/A 3 27957942 3.1 0.07 −2.48

25

C3.28147097 G/A 3 28147097 3.1 0.07 −2.48

C3.29268216 T/A 3 29268216 3.1 0.07 −2.48

C3.32214003 G/C 3 32214003 3.1 0.07 −2.48

C3.32823330 C/T 3 32823330 3.1 0.07 −2.48

C3.35621706 C/T 3 35621706 3.4 0.08 −2.51

C3.50114070 A/G 3 50114070 6.8 0.07 4.05

C3.50516216 T/C 3 50516216 3.2 0.38 −1.34

C5.3047617 C/G 5 3047617 4.7 0.07 2.7 —

C6.2476369 C/T 6 2476369 3.5 0.2 −1.47 —

C7.12591441 G/A 7 12591441 4.3 0.11 2.89

—C7.14255739 C/T 7 14255739 3.4 0.15 −1.73

C7.19705515 A/C 7 19705515 6.1 0.13 6.18

C8.33295392 C/G 8 33295392 4.6 0.37 1.34 —

PanL

C2.29645716 G/A 2 29645716 3.4 0.22 1.57
17,58

C2.29645949 T/C 2 29645949 3.8 0.23 1.62

C3.14502439 C/T 3 14502439 3.0 0.39 −1.25 25

C5.13976998 C/A 5 13976998 3.1 0.09 3.23 17

C7.3618032 T/C 7 3618032 3.3 0.11 −2.07 25

C8.4806303 T/C 8 4806303 3.3 0.11 −1.86 25,59

C9.54570214 G/T 9 54570214 3.2 0.12 1.83 17,25

PedL
C9.14370304 A/C 9 14370304 4.1 0.13 2.11

—
C9.54646405 C/A 9 54646405 3.5 0.19 1.74

Continued
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Trait SNP Alleles Chromosome Position −log(p) MAF SNP effect References

PH

C5.9294227 C/G 5 9294227 3.4 0.24 9.02
17,42

C5.17368448 G/C 5 17368448 3.0 0.12 11.32

C7.13010170 A/C 7 13010170 3.1 0.07 13.73 17,58

TGW

C2.1884254 G/A 2 1884254 4.8 0.21 0.14
—

C2.4114681 T/C 2 4114681 4.5 0.32 0.1

C3.4813917 T/C 3 4813917 3.7 0.23 0.1
17,25

C3.43310250 C/T 3 43310250 4.9 0.06 −0.25

C6.34654923 T/C 6 34654923 7.0 0.13 −0.21 25

C8.23236893 C/A 8 23236893 3.0 0.07 0.13

—C8.34760860 A/C 8 34760860 4.2 0.36 0.1

C8.39522974 C/T 8 39522974 3.7 0.25 0.11

C9.37011889 A/G 9 37011889 8.3 0.08 −0.33
59

C9.55718390 T/G 9 55718390 3.7 0.1 −0.19

TM

C3.50460866 T/C 3 50460866 3.7 0.37 2.88 —

C5.6559967 G/A 5 6559967 3.0 0.13 −3.5 —

C6.34314915 G/A 6 34314915 3.5 0.41 2.58 —

C7.18807581 A/G 7 18807581 3.2 0.06 −4.82
—

C7.18869945 G/C 7 18869945 3.3 0.06 −4.88

C8.2541016 G/C 8 2541016 3.2 0.16 −3.33 —

C9.10635590 T/C 9 10635590 3.2 0.2 3.02 —

TN

C4.8882993 G/A 4 8882993 3.1 0.22 0.49 17,25

C7.19587543 G/A 7 19587543 3.2 0.13 0.98

25
C7.19696191 C/T 7 19696191 3.3 0.11 1.29

C7.19705515 A/C 7 19705515 3.6 0.13 1.37

C7.19718741 G/A 7 19718741 3.3 0.11 1.29

C9.37523364 C/A 9 37523364 3.1 0.12 0.91 25

Table 2. List of significant MTAs along with contrasting alleles, chromosome, position, minor allele frequency 
(MAF) and SNP effect. 0.001 is considered as P-value cut off for significant MTAs. Earlier studies where QTLs 
are reported for same trait on same chromosomes are mentioned in last column.

Figure 3. Manhattan plots and quantile-quantile (Q-Q) plots (A and J) of the GWAS results for following 10 
traits including Days to flowering (DOF), plant height (PH), tiller number (TN), flag leaf length (FLL), flag leaf 
width (FLW), peduncle length (PedL), panicle length (PanL), tiller maturity (TM), grain yield (GY), and 1000 
grain weight (TGW), respectively. Significant MTA threshold [−log 10 (p) < 10−03] and Bonferroni threshold 
are represented by dash (red) and continuous (grey) lines, respectively. x-axis represents chromosomes.
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Allele effect and identification of desirable allele. The allele effect was determined for each allele of 
SNPs involved in seven MTAs involving three traits that fulfilled the Bonferroni criteria (Table 3). For all the three 
traits including FLW, GY and TGW, positive selection is required; thus, SNP alleles with positive allele effect were 
considered as desirable. For FLW, C9.37225457-T, C9.37443288-A and C9.38068016-T were found desirable; for 
GY, C3.50114070-G and C7.19705515-C were desirable; and for TGW, C6.34654923-T and C9.37011889-A were 
desirable to increase the trait values. The phenotype, with a desirable and undesirable allele of associated SNPs, 
were further tested using ‘Kruskal–Wallis test,’ which revealed significant difference for each phenotype (with and 
without desirable SNP allele) for all seven SNPs.

Identification of putative candidate genes. Total 27 candidate genes were identified which were resid-
ing within 25 Kb regions (upstream and downstream) of seven high confidence MTAs for threes traits (FLW, GY 
and TGW), see Table 4, however, no associated SNPs were present within the gene. For three MTAs associated 

Trait SNP Chr. Position
SNP 
alleles

Desirable 
allele

Desirable 
Allele 
effect P-value

Desirable 
genotype

FLW

C9.37225457 9 37225457 C/T T 0.9** 5.06E-18
F8, F34 
(3.2 cm)C9.37443288 9 37443288 C/A A 0.6** 3.12E-17

C9.38068016 9 38068016 C/T T 0.6** 3.12E-17

GY
C3.50114070 3 50114070 A/G G 12.7** 1.77E-07 F14 

(42.3 g)C7.19705515 7 19705515 A/C C 11.5** 7.82E-07

TGW
C9.37011889 9 37011889 A/G A 0.1** 4.98E-09 D85, D76 

(3.8 g)C6.34654923 6 34654923 T/C T 0.1** 9.52E-08

Table 3. List of Marker-trait associations (MTAs) fulfill the Bonferroni correction, with desirable allele and 
desirable allele effect. Desirable genotypes with desirable SNP alleles and phenotype may be used in foxtail 
breeding. **0.01 level of significance in Kruskal–Wallis test.

Trait Associated SNP Transcript Start End Strand Descriptiona

FLW

C9.37225457

Seita.9G323400.1 37216841 37217637 + —

Seita.9G323300.1 37206818 37208370 + AP2 domain (AP2)

Seita.9G323200.1 37197886 37201790 − 8-amino-7-oxononanoate synthase

C9.37443288

Seita.9G323700.1 37427089 37428983 + Protein of unknown function

Seita.9G323800.1 37438152 37439633 − Ancient ubiquitous protein

Seita.9G323900.1 37444252 37445177 − —

Seita.9G324000.1 37445345 37446088 − Ulp1 peptidase/protease

C9.38068016
Seita.9G327100.1 38052985 38054536 + Pollen allergen 1/DPBB_1

Seita.9G327200.1 38083746 38088203 + Arabinonate dehydratase/hydro-lyase

GY

C3.50114070

Seita.3G401100.1 50096532 50101244 − RBR family ring finger and IBR domain-
containing

Seita.3G401200.1 50109418 50111773 + —

Seita.3G401300.1 50115178 50119847 + Translation initiation factor IF-3

Seita.3G401400.1 50120425 50125567 − Pyridine nucleotide-disulfide oxidoreductase 
domain-containing protein 2

Seita.3G401500.1 50128614 50130162 + RNA recognition motif

Seita.3G401600.1 50129252 50133460 − ADP-ribosylation factor-like protein 2

C7.19705515

Seita.7G094000.1 19688870 19690228 − Late embryogenesis abundant protein 2

Seita.7G094100.1 19693214 19697416 + Glycosyltransferase

Seita.7G094200.1 19701121 19703506 − Aluminum-activated malate transporter 8

Seita.7G094300.1 19728010 19729582 − WDSAM1 protein

TGW

C9.37011889

Seita.9G321400.1 36991641 36994547 + Sentrin/sumo-specific protease

Seita.9G321500.1 36997661 37000034 − HD-ZIP protein N terminus

Seita.9G321600.1 37005554 37011470 − U-box domain-containing protein 35-related

Seita.9G321700.1 37016333 37018688 − Ulp1 peptidase/Ulp1 protease

C6.34654923

Seita.6G234400.1 34633343 34633845 − DNA polymerase delta subunit 4

Seita.6G234500.1 34641134 34645923 + —

Seita.6G234600.1 34655584 34665499 + ATP-binding cassette transporter

Seita.6G234700.1 34677410 34679017 + —

Table 4. Putative candidate genes residing close vicinity (25 Kb either side) to associated SNPs. a‘—’represents 
no annotation available.
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with FLW, total nine candidate genes were identified which found to encode AP2 domain, amino-oxononanoate 
synthase, ubiquitous protein, peptidases/proteases, pollen allergen1, arabinonate dehydratase/hydrolyase, etc. 
Similarly, ten candidate genes were identified in genomic regions harbouring two MTAs associated with GY; these 
genes encoded proteins involved in RBR family ring finger and IBR domain, translation initiation factor 3, pyri-
dine nucleotide-disulfide oxidoreductase domain-containing protein 2, RNA recognition motif, LEA protein, gly-
cosyltransferases, etc. For two MTAs associated with TGW, eight candidate genes were found involved in Sentrin/
sumo-specific protease, DNA polymerase delta subunit 4, ATP-binding cassette transporter, etc. (Table 4).

Pyramiding effect and desirable genotypes. The pyramiding effect of desirable alleles (including more 
than one SNP associated with the trait) was calculated for above mentioned three traits involving seven MTAs 
(that fulfilled Bonferroni criteria; Fig. 4). Analysis of pyramiding effect showed that an increase in a number of 
desirable alleles significantly affects the trait value. For instance, two SNPs associated with GY; genotypes with no 
desirable allele had a mean GY = 11.0 g, while the genotypes with one desirable allele had a mean GY = 18.4 g and 
genotypes with two desirable alleles had a mean GY = 33.6 g. The difference between mean GY with two, one and 
zero desirable alleles was highly significant (r2 = 0.40; p ≤ 0.000). A similar trend was observed for TGW. Mean 
TGW values of genotypes with two (3.1 g), one (2.4 g) and without any desirable alleles (1.5 g) showed significant 
difference among them (r2 = 0.41; p ≤ 0.000). For FLW, genotypes with three desirable alleles had significantly 
wider flag leaf (2.4 cm) than genotypes with no desirable allele (1.7 cm) and one desirable allele (1.5 cm). However, 
no significant difference was observed for FLW in genotypes with two desirable alleles and three desirable alleles.

Further, most desirable genotypes with a maximum number of the desirable allele for each of the above men-
tioned three traits (FLW, GY and TGW) were identified (Table 3). For FLW, two genotypes including F8 and F34 
were identified to have desirable alleles of three associated SNPs, and also showed higher traits value (3.2 cm). For 
GY, one genotype (F14; 42.3 g) was identified to have a desirable allele of two associated SNPs. Similarly, for TGW, 
two genotypes (D85, D76) were identified to have higher TGW and desirable alleles for two SNPs.

Discussion
GWAS has always been a potential approach for genetic dissection of complex traits, and it has been successfully 
utilized in a number of crops including wheat, rice, pearl millet, maize and cotton22,28–32. However, in foxtail mil-
let, only a couple of studies are available where GWAS was utilized to identify genomic regions controlling traits 
of interest25,26. Genetic diversity of panel is important prerequisites for GWAS and has been conducted in our 
earlier study26 which suggested that the panel is diverse. Out of 142, 89 genotypes were collected from different 
parts of India including Andhra Pradesh, Bihar, Tamilnadu, Jammu & Kashmir, Karnataka, Maharashtra, Madhya 
Pradesh, Rajasthan, Uttara Khand and West Bengal; remaining 53 genotypes were exotic and belonged to nine 
different countries (for details see Gupta et al.26). Further, population structure creates confounding in GWAS 
results. Thus it is important to conduct population structure analysis. Our earlier study26 suggested that there 
were five subpopulations in the panel.

Further, size and trait diversity of population also affects the power of GWAS33. In the present study, utilization 
of 142 genotypes which are sufficiently diverse suggested their suitability for GWAS. The size of the population 
used in the present study is slightly small but found to be comparable with GWAS conducted in other cereal crops 
including millets34–36. It has been suggested that small population size may be inefficient for the identification of 
significant associations with minor effect37. In the present study, we have identified significant MTAs even after 
implementing the most stringent Bonferroni correction. This suggested that the population size is good enough 
for GWAS; although, we agree that a larger population may lead to the identification of more MTAs. Descriptive 
statistics and frequency distribution (Supplementary Table 1; Supplementary Fig. 1) suggested that the panel 
had enough variability for each of the ten traits. Another important prerequisite of GWAS is the high-density 
marker19,20,38,39. In the present study, GBS enabled the development of a high-density genotyping data with ~10 K 
SNPs to conduct GWAS for agronomic traits.

Figure 4. Linear regression analysis for phenotype (dependent variable) and number of desirable SNP alleles 
(independent variable). R2 = regression coefficient; ***represents 0.0001 level of significance. x-axis represents 
number of desirable SNP alleles and y-axis represents phenotypic values.
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GWAS is based on LD which itself is affected by several factors including physical linkage, recombination, selec-
tion, genetic drift, etc.40. Furthermore, self-pollinating crops show stronger LD than cross-pollinating crop40–42.  
Higher recombination rate causes faster LD decay which ultimately results in higher mapping resolution. It is 
well understood that the recombination rate varies through genome43,44, and thus, some genomic regions have 
been identified as recombination hot-spots, where recombination rate is higher and vice-versa45. In foxtail millet, 
genome-wide LD is reported as 100 Kb25. In the present study, we estimated the genome-wide LD decay as well 
as for each of the nine chromosomes individually. It was observed that the decay distance varied across different 
chromosomes (76 Kb on chromosome 6 to 357 Kb on chromosome 4); genome-wide decay distance was found 
to be 177 Kb, which is well at par with the earlier study25. The rapid LD decay suggested that the population used 
in the present study is sufficiently diversified and suitable to conduct GWAS. Thus, the rapid LD decay and higher 
mapping resolution also made the study useful for cloning of QTLs.

A major limitation of GWAS is false positives that arise due to population structure. However, false positives 
may be reduced with the use of statistical models46,47. Although correction for population structure plays a vital 
role in reducing false positives, overcorrection may lead to false negative results22. Therefore, we initially tested 
the model fitting for population structure correction. Q-Q plots of all the ten traits showed the proper distribution 
of observed p-values over expected, which suggested that the association model used in this study is the best fit 
and maximized the confidence of GWAS results. Further, false positives may also arise due to multiple testing, 
because in each test using single SNP there is at least 5% error and with an increase in the number of SNPs (i.e., 
the number of tests) overall experimental error increases. Several statistical tools are available for multiple testing 
correction27. In the present study, we also applied corrections for multiple testing (e.g., Bonferroni correction) 
during GWAS. Here, we observed that out of 81 MTAs (associated with ten traits) only seven MTAs (associated 
with three traits) qualified Bonferroni correction. Although multiple testing corrections are important to reduce 
false positive, it becomes highly stringent due to the use of thousands of makers; and may lead to false negatives. 
Thus, FDR is also considered as a tradeoff and escaped detection of genuine MTAs in earlier studies22,48,49. In our 
study, we also observed that even MTAs with a very significant p-value (10−5) could not qualify multiple testing 
correction criteria. Thus, all the 81 MTAs may not be false, and thus, need further validation; however, seven 
MTAs those fulfilled the multiple testing correction criteria had more confidence.

It is widely known that most of the traits are complex and are controlled by a large number of genes/
QTLs15,17,19,20,50,51. In foxtail millet, linkage-based QTL mapping has been conducted for a number of agronomic 
traits such as days to heading, peduncle length, grain weight biomass, spikelet, yield, etc.15–17,52 using biparental 
mapping population. The identification of 81 MTAs in the present study adds to the existing knowledge of the 
genetic architecture of traits considered. Further, single locus analysis furnishes biased results since the back-
ground is not considered in this approach. Given this, we have conducted multi-locus analysis by considering the 
background genome as cofactor using recently developed FarmCPU approach53. Interestingly, out of 81 MTAs, 
60 were present on the same chromosome where QTL/s for the same traits were reported in earlier studies17,25,42 
(Table 2).

Seven high confidence MTAs were identified for three important agronomic traits including FLW, GY and 
TGW may prove useful in foxtail millet breeding program through marker-assisted selection after validation. 
For validation, linkage based interval mapping or joint linkage-LD mapping may be conducted using biparental 
mapping population or specialized populations (NAM, MAGIC). The above mentioned seven high confidence 
SNPs also found crucial in identifying important candidate genes underlying these traits. Candidate genes pres-
ent close vicinity of associated SNPs identified in the present study may be validated in the future so that can be 
deployed in breeding. For validation, one can use candidate gene-based association mapping using large popula-
tion, or functional characterization through RNAi, VIGS, etc. Identification of desirable alleles of these MTAs will 
enable their efficient utilization in crop improvement programs. Interestingly, the significant pyramiding effect of 
multiple MTAs for the single trait in our study suggested that the associated SNPs may combine to improve the 
trait substantially. For three traits (FLW, GY and TGW), three desirable genotypes were identified with a max-
imum number of desirable alleles. These genotypes may be used as a donor in foxtail millet breeding program. 
Intercrossing of these genotypes may combine desirable traits to develop improved high yielding foxtail genotype.

In foxtail millet, studies are available where GWAS has been conducted for agronomic traits using few SSRs26 
and million SNPs25. The present study provides better resolution of trait mapping using 10 K SNPs as compared to 
an earlier study26. Jia et al.25 conducted GWAS for 47 agronomic traits using 916 accessions and 0.8 million SNPs 
developed through whole-genome sequencing. The present study, where GWAS was conducted for ten agronomic 
traits (nine were common with Jia et al.25, TM was not studied in Jia et al.25) with lesser SNPs and accessions, may 
be questioned for its novelty. There are two parameters which made present study novel- (i) utilization of different 
accessions with different genetic background and (ii) phenotyping in different environments. These two param-
eters enabled us to identify some novel genomic regions associated with agronomic traits (Table 2). For example, 
two high confidence SNPs, one each associated with GY (C6.2476369) and TGW (C9.37011889) were identified 
on chromosome 6 and chromosome 9, respectively, in the present study. However, Jia et al.24 did not identify any 
SNPs associated with GY and TGW on chromosomes 6 and 9, respectively.

The present study explored the genetic architecture of ten agronomic traits using LD based GWAS exploiting 
historical recombination in a natural population. The population used in the present study showed a wide range 
of variability for traits studied. Further, ddRAD-seq provided high-density genotypic data which is a pre-requisite 
for GWAS. Our study led to the identification of 81 MTAs for agronomic traits including some novel MTAs and 
provided better insights into the genetic architecture of traits. Significant pyramiding effect of associated SNPs 
with the same trait suggested their potential utilization in foxtail breeding. The desirable alleles and genotypes 
identified in this study will be useful in crop improvement programmes.
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Materials and Methods
plant material and phenotyping. The phenotypic data of 142 foxtail millet genotypes previously reported 
by Gupta et al.26 was used in the present study. Precisely, the genotypes were phenotyped for ten yield contribut-
ing agronomic traits for three consecutive years (2009–2011) at the research fields of National Institute of Plant 
Genome Research (NIPGR), New Delhi, India, in a randomized complete block design with three replications. 
Mean data over the years of each of the 10 traits were utilized during the present study. The traits included days 
to flowering (DOF), plant height (PH), tiller number (TN), flag leaf length (FLL), flag leaf width (FLW), pedun-
cle length (PedL), panicle length (PanL), tiller maturity (TM), grain yield (GY), and 1000 grain weight (TGW). 
Descriptive statistics, frequency distribution and Pearson’s correlation coefficient between all possible trait-pairs 
were analyzed using SPSS v17.0 software.

ddRAD sequencing and sNp calling. DNA was extracted from one-month-old leaf samples of 142 gen-
otypes using the CTAB method54. The DNA samples were RNase treated to remove RNA contamination, and the 
quality and quantity were checked on 1% agarose gel and NanoDrop 1000 (Thermo Scientific). For genotyping, 
Double Digest Restriction Associated DNA (ddRAD) sequencing approach was used55, and sequencing was done 
using Illumina Hiseq4000 (AgriGenome Labs Pvt Ltd, Hyderabad, India). Raw Fastq reads were demultiplexed 
allowing one mismatch to obtain reads for each sample. Data were filtered on the basis of RAD TAGs. Filtered 
reads were then subjected to 5′ and 3′ base trimming. Illumina 5′ and 3′ adapter sequences were also removed. 
Paired-end alignment was performed using Bowtie2 (version 2-2.2.9) program with default parameters to the 
reference genome (http://genome.jgi.doe.gov). The aligned samples and the reference genome sequence are used 
for variant calling using default settings of SAMtools version 0.1.18.

Linkage disequilibrium. LD (in terms of r2) analysis was performed for the whole genome as well as indi-
vidually for each of the nine chromosomes using window size 50 with the help of software TASSEL v5.0. To esti-
mate LD decay, non-linear regression curve was utilized56, and LD decay distance was estimated as the physical 
distance between SNPs where average r2 reduced to half of the maximum LD value.

Marker-trait associations. SNPs with <30% missing data and >5% minor allele frequency were utilized for 
GWAS. All the 142 genotypes used for GWAS were having <30% missing genotypic data. For the association test, 
a recently developed method called Fixed and random model Circulating Probability Unification (FarmCPU53) 
was used. This method is highly efficient and also eliminates confounding issues arising due to population struc-
ture, kinship, multiple testing correction, etc. This method utilizes both Fixed Effect Model (FEM) and a Random 
Effect Model (REM), iteratively. REM estimated pseudo-quantitative trait nucleotides (QTNs) and FEM tested 
marker using pseudo QTNs as covariates. First, three components identified through principal component analy-
sis (PCA) using TASSEL v5.0 were included as a covariate in the association test model. SNP with p-value < 0.001 
declared as significant MTAs. Bonferroni-corrected p-value threshold was set as 0.01. To show the model fitting 
(accounting for population structure), quantile-quantile (Q-Q) plots were also analyzed. The Q-Q plot showed 
the distribution of observed and expected p-values (association test statistics). Desirably in case of appropriate 
model fitting, Q-Q plots should show a solid line (i.e., the distribution of observed p-value is similar to expected 
one) represented no biasness; and sharp curves at the end which represented a small number of true associations 
among thousands of unassociated SNPs. The extent of deviation of curve end from the diagonal is the measure of 
the power of test statistics.

Allele effect and pyramiding effect of desirable alleles; identification of desirable geno-
types. Phenotypic effect (ai) of each allele of SNPs (significantly associated with trait following Bonferroni 
correction) was estimated following Zhang et al.57. Kruskal–Wallis test was performed to identify whether the 
alleles differ considerably for the associated traits. Subsequently, favourable alleles were identified for each of the 
trait considered according to the breeding objective. For traits with negative selection, ai < 0 was considered as 
desirable allele; while, for a trait with positive selection, ai > 0 was considered as a desirable allele.

The pyramiding effect was estimated in the case where more than two SNPs were found to be associated with 
the same trait (after Bonferroni correction). To determine the pyramiding effect, linear regression was performed 
using the number of desirable SNP alleles for traits (independent variable) and corresponding trait values of the 
genotypes that contained different numbers of desirable SNP alleles (dependent variable). Genotypes with a max-
imum number of desirable alleles and desirable phenotype were considered as a desirable genotype.

Identification of putative candidate genes. To identify putative candidate genes residing at the close 
vicinity of high confidence SNPs, the associated SNPs were mapped to the reference genome Setaria italica v2.2 
(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Sitalica). Transcripts present within 25 Kb 
regions from both sides of associated SNPs were fetched along with their description.

Data Availability
The datasets supporting the conclusions of this article are included within the article and its Additional files.
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