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Somatic embryogenesis (SE) is the most striking and prominent example of plant 
plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to 
germination by auxin treatment can be seen as switch between stress levels associated 
to morphophysiological plasticity. This experimental system is highly powerful to explore 
stress response factors that mediate the metabolic switch between cell and tissue 
identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop 
improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect 
plants throughout life cycles against variable abiotic and biotic conditions. We provide 
proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant 
for developmental plasticity and be associated to yield stability. Our perspective on AOX 
as relevant coordinator of cell reprogramming is supported by real-time polymerase 
chain reaction (PCR) analyses and gross metabolism data from calorespirometry 
complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen 
(EPPO)–stressed, and endophyte-treated seeds. In silico studies on public experimental 
data from diverse species strengthen generality of our insights. Finally, we highlight ready-
to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do 
not require further details on molecular physiology and metabolism. This is demonstrated 
by applying our research & technology concepts to pea genotypes with differential yield 
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performance in multilocation fields and chickpea types known for differential robustness in 
the field. By using these concepts and tools appropriately, also other marker candidates 
than AOX and complex genomics data can be efficiently validated for prebreeding and 
seed vigor prediction.

Keywords: environmental stress, developmental plasticity, metabolic biomarker, endophytes, seed technology, 
plant performance prediction

BACKGROUND

Environmental changes challenge plant plasticity at both 
individual and evolutionary levels. Moreover, environment can 
blur borders between hormone-related individual physiological 
characteristics and species-relevant, genetic traits by acting 
on meristems/stem cells (Cutri et al., 2013). Environmental 
changes are transmitted to plants via complex, diverse signaling. 
External signals are translated via secondary messengers to 
adaptive mild or severe molecular-physiological responses. 
Adaptive growth and developmental regulation associate 
to complex concentration- and spatiotemporal-dependent 
balances of networking hormones. Transcription and epigenetic 
factors are often rated as master regulators. They play critical 
roles during adaptation and link to genome-wide structural 
changes, such as copy number variability (CNV) and chromatin 
remodeling (Arnholdt-Schmitt, 2004; Gabur et al., 2019). This 
complex scenario connects to wide concerted gene networks, 
where DNA sequences form the structural primary basis for 
metabolism (Arnholdt-Schmitt, 2005a). Reactive oxygen species 
(ROS), redox-related pathways, and nitric oxide are known to 
integrate environment signaling via DNA break and repair 
mechanisms, hormone actions, and communication from cell 
to nucleus (retrograde communication) to adjust metabolism 
and physiology for individual genotype adaptation (anterograde 
communication). ROS induced ROS release’ (RIRR) is a 
process in which cellular compartments or organelles release 
ROS, which triggers production of ROS at other sites (Zandalinas 
and Mittler, 2018). RIRR is explored as crucial pathway to 
confront abiotic or biotic challenges. Crosstalk between ROS 
and autophagy linked to hormone signaling is associated to 
stress tolerance.

Mitochondria play a major role in managing stress response 
and cell network integration (Galluzzi et al., 2012). They 
adjust their structures, mobility, and activities upon external 
and internal stimuli to optimize growth and development via 
mitochondrial retrograde response signaling. Expression of 
transcription factor (TF) ANAC017 in complex hierarchy of 
12 downstream TFs can lead to higher expression of genes 
related to mitochondrial stress and cell death/autophagy (Meng 
et al., 2019). Somatic embryogenesis (SE) is stress-inducible 
(Zavattieri et al., 2010). The balance between survival, embryo 
development, and programmed cell death (PCD) together 
with suspensor elimination seems critical for SE efficiency in 
angiosperms and gymnosperms (Smertenko and Bozhkov, 
2014). Mitochondria play crucial role in manifesting two waves 
of PCDs during SE in conifers (in Arnholdt-Schmitt et al., 2016). 

They perceive signals from environment through adaptive 
membrane fluidity and transfer signals via respiration mediated 
by ROS for adaptive metabolic adjustment at cell, tissue, organ, 
and organism level. Metabolic profiling in young maize roots 
is promising for predicting heterosis in field (de Abreu E Lima 
et  al., 2017). Calorespirometry is the only technology that 
enables linking temperature-dependent, metabolic adjustment 
based on respiration traits to growth performance (Hansen 
et al., 2005; Hansen et al., 2009; Scafaro et al., 2017). In a simple, 
rapid way, it allows exploring almost simultaneously rates of 
both heat emission and CO2 production (Hansen et al., 2005; 
Arnholdt-Schmitt, 2017). Calorespirometry data from Prosopis 
cineraria correlated closely with embryogenic tissue response. 
Therefore, calorespirometry was recommended as an early 
predictive tool for reprogramming events (Kim et al., 2006). 
In carrot, alternative oxidase 1 AOX1 and AOX2a expression 
peaks during de novo growth induction, which coincided with a 
critical time point that can be used for biomass prediction using 
calorespirometry (Campos et al., 2016). In maize, salicylic acid–
induced earlier seed germination could be sensed by increased 
heat rates (Moravcová et al., 2018). Calorespirometry enables 
studying in unicellular systems the effect of isolated AOX genes on 
growth performance linked to gross metabolism and cell density 
(Arnholdt-Schmitt and Patil, 2017). Recently, calorespirometry is 
being developed as a general tool for conventional and molecular 
plant/holobiont selection associated to plant robustness and 
germination efficiency (Arnholdt-Schmitt et al., 2015; Arnholdt-
Schmitt et al., 2018).

CARROT SEEDS PROVIDE A POWERFUL 
EXPERIMENTAL SYSTEM TO STUDY 
CELL FATE AND DEVELOPMENTAL 
PLASTICITY

Seed germination and induction of SE are adaptive responses to 
environmental changes. Germination of dry seeds occurs upon 
water imbibition in an oxygen-containing environment. This 
process, visible by radicle emergence, can be seen as environment-
induced stress. Seeds recover from the dry and oxygen-low status 
and acclimate to water- and oxygen-enriching environment. 
On the other hand, SE is known as adaptive response to higher 
stress levels (Zavattieri et al., 2010; Fehér, 2014; Winkelmann, 
2016). In vitro induction of SE is the most striking example 
of stress-inducible cell reprogramming due to totipotency 
acquisition (Frederico et al., 2009a). This response emerges 
when survival mechanisms are activated by extreme conditions.  
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It was proposed that SE can be used as an experimental system to 
identify differential genotype behavior linked to stress tolerance 
(Frederico et al., 2009a; Afuape et al., 2013).

In early steps of zygotic and SE, auxin distribution plays 
a predominant role for polarity and pattern formation 
(Winkelmann, 2016; Robert et al., 2018; Figueiredo and 
Köhler, 2018). The effect of exogenous and endogenous auxin 
on growth and development depends on complex feedback 
networks associated to spatiotemporal biogenesis, transport, 
and gradients of endogenous auxin at the tissue and cell levels. 
Mitochondrial disturbance was unambiguously shown to be 
harmful for auxin signaling (Kerchev et al., 2014). Abscisic acid 
(ABA) and gibberellins are primary hormones that regulate 
seed dormancy and germination in a concentration-dependent 
manner (Miransari and Smith, 2014; Shu et al., 2016). However, 
ABA-mediated seed dormancy seems to be inevitably controlled 
through auxin-responsive factors (ARFs) besides micro RNAs 
(miRNAs) (Liu et al., 2013). Also, accumulation of endogenous 
auxins was found to be concomitant with germination initiation 
(Bialek et al., 1992). Germination can be promoted or inhibited 
through supplying auxin depending on its concentration, which 
is species-dependent (Garrard, 1954). In carrot seeds, zygotic 
embryos are still immature after desiccation (Homrichhausen 
et al., 2003). When carrot seeds are treated with high auxin 
from imbibition, germination is suppressed, and at the same 
time, embryogenic calli are induced that can later give rise to 
multiple propagules (Frederico et al., 2009a). Thus, the combined 
experimental system including germination and SE induction 
provides excellent opportunity to study changes between 
different levels of stress severity. This makes it especially useful 
to reveal relative importance of potentially relevant factors that 
interacts during stress adaptation.

AOX—A MERE STRESS INDICATOR/
ALLEVIATOR OR RATHER AN EFFICIENT 
COORDINATOR OF ADAPTIVE 
MORPHOPHYSIOLOGICAL PLASTICITY?

Alternative oxidase is key enzyme in mitochondrial alternative 
respiration (AR), an additional cyanide-insensitive pathway 
for driving electrons to oxygen, thereby decreasing ROS 
production. This alleviates various stress conditions, including 
drought, low oxygen, and temperature. AOX gene family is 
nucleus encoded, composed of one to six members distributed 
in two subfamilies (AOX1 and AOX2) (Costa et al., 2014; Costa 
et al., 2017).  Vanlerberghe et al. (2009) postulated a “master 
role” for AOX through degree of homeostasis signaling. It can 
improve cell survival rates and seems to determine threshold 
for inducing PCD. This was shown in various organisms 
across kingdoms (Rogov et al., 2014; Fernandez Del-Saz 
et al., 2018). The role of AtAOX1a in maintaining cellular 
redox homeostasis, protecting cells against oxidative damage, 
improving the chance of survival and sustaining growth under 
oxidative stress in Saccharomyces cerevisiae was reported 
(Vishwakarma et al., 2016). Ivanova et al. (2014) highlighted 
reciprocal interaction of mitochondrial stress and auxin 

signaling for AtAOX1a regulation. It has been confirmed by 
many recent studies that AOX acts as a positive indicator for 
plant performance and the role of AOX in complex networks 
(Scheibe, 2018; Selinski et al., 2018; Wang et al., 2018). Positive 
effects are mediated mainly through AOX down-regulation 
with the help of transcriptional suppression and protein activity 
regulation that confers regulatory and metabolic flexibility 
(Fernandez Del-Saz et al., 2018; Selinski et al., 2018). AOX1 
and AOX2 have differences in their conserved regions flanking 
CysI (conserved cysteine residue) (Costa et al., 2009a; Costa 
et al., 2014). They are differentially regulated by tricarboxylic 
acid cycle metabolites related to different structures and 
functionalities (Albury et al., 2009; Elliott et al., 2014; Selinski 
et al., 2017). However, Anthony Moore stressed that AOX 
activity conferred by all gene family members together is 
important (personal communication), since the mechanism 
of enzymatic activity is the same, irrelevant of AOX gene and 
organism (Elliott et al., 2014). Coregulation versus differential 
regulation of DcAOX1 and DcAOX2a in carrot was connected 
to earlier or later stages in embryo development (Frederico 
et al., 2009a). Co- upregulated transcription of both genes was 
observed during de novo growth induction from quiescent root 
phloem tissue (Campos et al., 2016).

In 2006, the hypothesis was raised that AOX can serve as a 
functional marker for efficient cell reprogramming under stress 
(Arnholdt-Schmitt et al., 2006; Clifton et al., 2006; Arnholdt-
Schmitt, 2015), and a symposium and special issue (Physiol 
Plantarum, 2009) were exclusively dedicated to its role in yield 
stability. The role of AOX for target cell or tissue reprogramming 
and plant plasticity was studied in diverse in vitro and in 
vivo systems, such as in olive rooting (Santos Macedo et al., 
2009; Hedayati et al., 2015; Velada et al., 2018), in carrot SE 
(Frederico et  al., 2009a; Arnholdt-Schmitt et al., 2016), carrot 
primary cultures (Campos et al., 2009; Campos et al., 2016), 
and germination of Hypericum perforatum (Velada et al., 2016). 
AOX gene diversity is characterized extensively (Costa et al., 
2009b; Polidoros et al., 2009; Cardoso et al., 2015; Nobre et al., 
2016; Nogales et al., 2016a), and the importance of ecotyping 
(Costa and Svensson, 2015), epigenetics (Noceda et al., 2015; 
Costa and Arnholdt-Schmitt, 2017), and new software based 
on artificial intelligence (Quaresma et al., 2015) for functional 
marker development was highlighted. Considering the plant–
endophyte interaction for functional genomics was stressed in 
general (Arnholdt-Schmitt et al., 2014; Nogales et al., 2016b), and 
involvement of AOX from both partners in symbiotic systems is 
indicated (Campos et al., 2015; Mercy et al., 2017).

During soybean germination, Yentur and Leopold (1976) 
observed transition from alternative to normal respiration 
at 4 to 8 hours after seed imbibition (HAI). AR was linked 
to germination initiation, seedling growth, and chlorophyll 
synthesis. Similar results were reported in other species (Esashi 
et al., 1979). In cocklebur seeds, AR increased by 5 to 7 HAI 
and contributed heavily to germination at its earliest stage. 
By applying AOX-inhibitor salicylhydroxamic acid (SHAM) 
to seeds, Esashi et al. (1981) showed that the most sensitive 
phase to SHAM ranged from 6 to 12 HAI. These authors also 
observed that seeds with higher germination potential showed 
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higher capacities of AR. In Orobanche, a parasitic plant, “clear-
cut effect” germination through AOX inhibition corresponds to 
changes in oxygen consumption and had functional implication 
for controlling germination and pathogenicity (Nun et al., 2003). 
In early stages, germination was sensitive to lower O2-tension, 
indicating relevance of AR, since AOX has lower affinity to O2 
than cytochrome oxidase (Bonner, 1973, cited in Yentur and 
Leopold, 1976). Avena fatua showed maximal germination 
efficiency when seeds were treated by cyanide or azide during 
4 to 16 and 4 to 12 HAI respectively. While stimulation of 
respiration by azide appeared to be SHAM sensitive, once 
induced, both azide- and cyanide-stimulated respirations were 
insensitive to SHAM (Tilsner and Upadhyaya, 1987). In dry 
and mature seeds of Arabidopsis thaliana, and during early 
germination, Saisho et al. (2001) and Clifton et al. (2006) found 
high expression of AOX2, with a rapid decrease of transcripts 
after 12 HAI. However, AR capacity seemed dependent on both 
family members, AOX2 and AOX1a (Saisho et al., 2001). A critical 
role of ROS for germination was indicated by positive effects of 
H2O2 and adverse response to AOX inhibition; the importance of 
exogenous H2O2 in germination was also confirmed in other plant 
species (Barba-Espín et al., 2012). Auxins can induce oxidative 
stress and substitute H2O2 treatment. In olive, auxin-dependent 
de novo root induction was linked to H2O2 (Santos Macedo et al., 
2009, and references herein). An inhibitory effect of SHAM on 
olive rooting was observed in micro-shoots and semi-hardwood 
cuttings (Santos Macedo et al., 2012; Porfirio et  al., 2016). 
SHAM inhibition appeared to be specific to rooting and did 
not interfere with preceding callus formation (Santos Macedo 
et al., 2012). Promising association between rooting ability and 
OeAOX2 gene polymorphism in olive cuttings was first suggested 
by Santos Macedo et al. (2009) and later confirmed in genetic 
studies by Hedayati et al. (2015). Recently, Velada et al. (2018) 
associated OeAOX1a and OeAOX1d transcript accumulation 
to induction, initiation, and expression phase of rooting. Both 
genes were coregulated and dramatically increased in early 
stages without visible root induction with a maximum peak of 
transcript accumulation at 8 HAI and rapid decrease from 1 
DAIs (days after imbibition). At 4 DAIs, a second smaller peak 
was observed corresponding to initiation of first meristemoids 
and morphogenetic zones. A third increment occurred for 
both genes around 10 to 14 DAIs, which corresponds to callus 
formation from 12 to 14 DAIs before root emergence starts at 
around 22 DAIs. At the earliest increments, OeAOX1a was more 
pronounced than AOX1d, and higher transcript levels were 
observed at 14 DAIs when cell division activity increased. It 
remains to be seen whether differences in transcript accumulation 
might be related to distinct auxin responsive elements observed 
within both promoter regions.

In SE, less information is available on AR, but a role of AOX was 
proposed by Arnholdt-Schmitt et al. (2006; 2016). In Abies alba, 
AOX was found to act during SE induction via ROS capturing 
as an anti-apoptotic factor (Petrussa et al., 2009). Frederico et al. 
(2009a) reported early up-regulation of AOX transcripts during 
initiation of carrot somatic embryo development upon auxin 
depletion. Transcript level increase was consistent with a 2.5-fold 
up-regulated AOX1 and 1.5-fold down-regulated AOX2a. During 

late embryo development, differential regulation was observed, 
and it was reversibly suppressed by SHAM supply and depletion. 
This research was aimed to identify promising marker candidates 
for assisting SE in recalcitrant species such as conifers, finally 
promising functional marker candidates could be identified from 
DcAOX2b (Frederico et al., 2009b; Frederico, 2017).

In Figure 1, the advanced rationale of our perspective on the 
coordinative role of AOX in stress management and its practical 
impact for plant holobiont breeding and applied functional 
hologenomics (Nogales et al., 2016b) are explained. It starts from 
original research (A–C) until proof-of-concept validation (D) 
(methods are provided in Supplementary file). In conclusion, we 
found that (a) the level of early AOX transcript stress signaling can 
be relevant and associated to subsequent changes in metabolism 
and morpho-physiology; (b) when strong morphological 
reprogramming is induced (by adding highly concentrated, 
stressful auxin that induces SE) versus expression of already induced 
morpho-physiology (seed imbibition in auxin-free medium that 
initiates germination), an early higher AOX transcript peak appears 
(Supplementary Figure S1); (c) higher early AOX stress signaling 
is linked to slower AOX stress signaling recovery associated to 
slower global metabolic adjustment and increase in carbon use 
efficiency (CUE); (d) very first hours of seed germination are 
relevant for both, individual development (germination efficiency, 
seed vigor) and identification of differences in seed vigor due to 
genetics or seed treatment; (e) differences in seed vigor and plant 
field performance can be predicted from early hours after seed 
imbibition by SHAM-inhibition trials and global metabolism data 
based on respiration traits (oxycaloric equivalent); (f) arbuscular 
mycorrhizal fungi (AMF) inoculation interfered with germination 
efficiency affecting root length growth rather than by initiating 
germination; (g) AMF inoculation interacts with SHAM treatment 
on root growth and palliates effects of the inhibitor on germination 
efficiency (Supplementary Figure S2); (h) AMF inoculation 
effects can be modified by endophytes available in seeds.

To validate generality of our insights, we searched for in silico 
data. We reviewed public transcriptome data on germination 
of Arabidopsis and soybean and on auxin-induced SE from 
Arabidopsis wild type (Col-0) and nonembryogenic mutant 
clf/swn (Table 1). Taken all findings together, higher initial 
expression of AOX1a appears to be essential for efficient root 
emergence, while higher expression of AOX2 (a/b/c type) is 
required for further development. Related to SE, in wild type 
(Col-0), AtAOX1 transcript increase was important to overcome 
epigenetic SE barriers. It was potentiated through injury, while 
AOX2 expression remained stable. In clf/swn, AOX1 did not 
increase, and AOX2 was barely detected. Appropriate in silico 
studies on plant–endophyte interaction were not available from 
germination trials and SE. However, endophytes modulate AOX 
transcripts in a species-, stress-, and development-dependent 
manner (Supplementary Table S1). It is confirmed that 
endophytes interact specifically with stress-related AOX gene 
family members. In Arabidopsis, salt stress increased AOX1a 
expression, while Enterobacter species reduced its expression. 
However, when salt stress was applied together with endophytes, 
mRNA levels of AOX1a were maintained low (de Zélicourt et al., 
2018) (Table S1).
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OUTLOOK

Biologists aim to understand biological and ecological 
complexity. However, for economy, it is important that biological 
systems work properly as expected. This contrasting view from 
application is the reason why top-down approaches are required 
for crop improvement rather than bottom-up strategies starting 
with complexity (Arnholdt-Schmitt, 2005a). First, species-
specific target tissues/cells need to be identified that associate 
to outlined traits, such as yield stability; for example, adaptive 

growth and development responses depend on stem cells, and 
molecular characterization needs to start at that cell level. This 
insight is widely agreed within the community working with 
AOX (Arnholdt-Schmitt, 2005b; Nogales et al., 2015; Ragonezi 
and Arnholdt-Schmitt, 2017, Fernandez Del-Saz et al., 2018; 
Selinski et al., 2018). For breeding purposes, early selection at 
seed level is highly advantageous. Individual genetic information 
is physically concentrated due to high percentages of stem 
cells. Thus, it is easily accessible for characterization without 
requiring necessarily tissue or cell isolation. Moreover, during 

FIGURE 1 | Continued
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seed imbibition, the embryo is still at an early point of epigenetic 
programming and provoked for the first time to show its basic 
genetic capacity for stress management. These might be the 
reasons why successful prediction of later plant responses can 
already be done from germinating seeds.

Biological systems are unique and have their individual 
internal complexity that drives adaptive responses. Nevertheless, 
breeding and agricultural management can improve the 
probability that biological systems will function as expected. 
This strategy was successful over centuries. However, biological, 
ecological, and socio-economical systems underlie permanent, 
mutually dependent changes and require continuous adaptation. 
Plants with high general plasticity or robustness provide a better 
chance to sustain changing complex conditions and to enable the 
highest economic output.

Until the 1970s, it was believed that individual enzymes might 
play a key role in crop improvement for stable yields. However, this 
view changed (see in Arnholdt-Schmitt, 2005a) along with growing 
knowledge on biological complexity, the crucial role of quantitative 

genetics, and the importance of (not only social, but also) biological 
and genome-wide networks (systems biology). This is also the 
reason why a master role of AOX has been recently questioned 
(Scheibe, 2018; Wang et  al., 2018). It is not easily accepted that 
one enzyme or pathway might play a critical, unique role for 
determining general fitness and productivity of plants. This drastic 
view is related to believing more in networks instead of individual 
components. However, the presented new fundamental insights 
applied to seeds with differential vigor strengthen our perspective 
that the small enzyme “clan” of AOX can play a key coordinative 
role for predicting seed and plant performance. Nevertheless, this 
view does not exclude that other types of marker candidates may 
also be successful. SHAM inhibits AOX, but it can affect also other 
enzymes and pathways. In contrary to other AOX inhibitors, such 
as propyl gallate, SHAM distinguishes AOX gene variants (Berthold, 
1998), which might make this inhibitor especially interesting for 
genotype discrimination. Therefore, studying complex effects 
of SHAM on initiating germination versus SE in the proposed 
experimental carrot system might help identifying further 

FIGURE 1 | (A) Differential DcAOX transcript accumulation on auxin-free (initiation of germination) versus auxin-containing medium (SE induction). At day 1 of carrot seed 
cultivation with and without auxin, a significant increase in AOX transcript accumulation was observed (Ai, ii). This was mainly due to AOX1 (Figure S1) and confirms its role as 
stress indicator as shown in many other systems (see references in text). However, when SE was induced, this peak was strikingly higher, which indicates higher stress.  
In the following days, the level of AOX transcripts remained stable in the absence of auxin, since decreasing levels of AOX1 were compensated by slightly variable, but 
increasing levels of AOX2a. In this equilibrated situation, growth of seed embryos were initiated, which was visible by root emergence. AOX2 transcript levels increased to 
significantly higher values at day 7 when seedling growth was established. On the contrary, when SE was induced, slower stress recovery was indicated; the high peak of 
AOX transcripts was rapidly going down due to significantly decreasing amounts of AOX1 transcripts. However, AOX2a transcripts remained at stable level. From day 4, the 
overall transcripts was stabilized at a low level. In auxin-containing medium that mediated SE induction, no increase in AOX2a could be observed during the experimental time 
period (Aii). Sequential SHAM inhibition during the initiation of germination confirmed that most critical events for germination happen from 3 to 15 HAI (Aiii). (B) Differential 
gross metabolic changes on auxin-free medium (initiation of germination) versus auxin-containing medium (SE-induction). From day 2 of carrot seed imbibition, i.e. 1 day after 
AOX stress signaling was observed, metabolic heat emission rate (Bi) and rate of CO2 production (Bii) increased. At that time, we started to observe emergence of radicles. 
From day 3, carbon was efficiently translated into growth indicated by an increased value for carbon use efficiency (CUE) (Biii). When SE was induced by auxin at imbibition, 
metabolic heat emission rate was transiently suppressed, and a slighter increase in heat rate and RCO2 started only after day 4. Nevertheless, this increase did not reach the 
same level as observed already at day 4 during germination and remained still low until end of experiment at day 10 after imbibition. While during germination CUE increased 
rapidly to 0.7, a value that indicates cell division growth (Hansen et al., 2005), during SE this value was reached only from day 9, which can thus be supposed to indicate 
initiation of embryonic callus formation. (C) SHAM reduces root length growth and germination rate and mycorrhiza (AMF) treatment can partially palliate negative SHAM 
effects. Sequential SHAM treatment during the first 35 HAI changed the mean length of emerging roots in comparison to control seeds (only in water until 65 HAI) in a 
concentration-dependent manner when observed at 65 HAI (Ci). However, no differential effects were observed when treatment start varied from 3 to 35 HAI. When SHAM 
was supplied only at 40 HAI, root length could no longer be differentially affected by inhibitor concentration. Influence of SHAM and AMF on the germination rate and root length 
was represented in graphs (Cii, iii). AMF-inoculated seeds increased germination efficiency by affecting root length growth rather than by affecting early initiation of germination. 
AMF interacted with SHAM treatment on root growth and could partly compensate SHAM-reduced germination rate. Additionally, endophytes available in the seeds blocked 
the positive effect of added AMF on root growth (visible already at 40 HAI) and affected % of germination only when observed at 65 HAI (shown in Figure S2). Differences in 
root length between treatments for each time are stated with different letters (α = 0.05). (D) Earlier AOX increase during germination is linked to higher seed vigor and plant 
robustness. As proof-of-concept trials, control and primed, coated commercial F1 carrot seeds (cv. Nerac 2) (Di), control, and elevated partial pressure of oxygen (EPPO) 
stress–treated carrot seeds (cv. Nantaise 2/Milan) (Dii), Pea seeds from breeding lines with top-ranking, mid-ranking and bottom ranking biological and grain yielding ability over 
three test environments (Annicchiarico et al., 2019) were compared for 18 each of two RIL populations (Diii) and two chickpea types known for differential yield performance 
and multistress tolerance in field were compared (Div). (Di) Primed, coated seeds show higher germination efficiency and have improved seedling vigor in field (seeds and 
information provided by BejoSamen). These seeds show increased earlier metabolic heat emission rate and CO2 production (data not shown). When treated with SHAM from 
10 HAI, germination efficiency in primed, coated seeds could not be reduced as strongly as the control. This is congruent with our expectation that AOX signaling is critically 
relevant for germination efficiency. From the described results (Panels A–C), primed seeds could be expected to demonstrate an earlier stress-related AOX peak than control 
seeds and a more efficient stress recovery indicated by rapidly lowered AOX1 transcript levels. Thus, primed seeds could supposedly be less sensitive to early SHAM inhibition 
at 10 HAI during germination. In fact, this could be shown homogeneously across all three repetitions by using 3× bulked samples of 40 seeds. Further, heat rate increase of 
primed seeds could completely be suppressed when SHAM was applied at 2 HAI, while this did not happen in control seeds where heat rate increase was only postponed 
(data not shown). (Dii) EPPO-stressed seeds induce aging and showed already 2 weeks after having treated the dry seeds, a significantly reduced speed of germination at T50 
(data not shown). In agreement with the expectation that higher vigor control seeds are at the start of SHAM treatment at 10 HAI, which are already less sensitive to the AOX 
inhibitor, EPPO-stressed seeds display lower germination rates homogeneously in all three repetitions. (Diii) Pea breeding lines that were grown by a breeder in three locations 
demonstrated significant differences in yield performance. Only the best breeding line KI-L34 was selected by the breeder for cultivar registration based on complex field data. 
By applying calorespirometry at 10 HAI at a constant temperature (25°C) and using oxycaloric equivalent (Rq/RCO2) values, the breeding lines could be ranked a posteriori 
with an inverse relationship to yield data. The breeder-selected line for registration was in fact the only one, significantly different from all others. Thus, applying our method 
would provide a highly innovative, predictive biomarker for early plant selection on yield ability. (Div) Early chickpea plant vigor is critical for plant productivity under terminal 
drought conditions (Sivasakthi et al., 2017). From the two principle chickpea types, Desi and Kabuli, it is known from vast field experience that Desi is clearly superior in terms of 
multistress tolerance and yield performance (Purushothaman et al., 2014). By applying our approach, we can discriminate both types and predict a posteriori the known better 
yield stability of Desi by a lower oxycaloric equivalent (Rq/RCO2) value due to differential carbon use at 10 HAI.
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TABLE 1 | Expression of AOX genes during germination (Arabidopsis and soybean) and somatic embryogenesis (Arabidopsis) using RNA-seq data. 

Species Bioproject Tissue/Genotype Sample Replicate 
number

AOX gene expression (RPKM) References

AOX2

AOX1a AOX1b AOX1c AOX1d AOX2a AOX2d

G
er

m
in

at
io

n

A
. t

ha
lia

na

PRJNA369750 Dry seed Seed- 0h 3 1.25a 0.008a 0.009a 0.15a 11.8a Narsai et al., 
2017Germinating seed Soaked in light exposure – 1 h 3 1.6a 0a 0.14ab 0.011b 6.45b

Soaked in light exposure – 6 h 3 1.2a 0a 0.3ab 0.006c 6b

Soaked in light exposure – 12 h 3 0.5a 0a 0.31ab 0.002c 1.65c

Soaked in light exposure – 24 h 3 5.8b 0.003a 0.96c 0.006c 1.21c

Seedling Soaked in light exposure – 48 h 3 9.6c 0.003a 0.25a 0c 0.1c

PRJNA415950 Col-0 control Dry seed 3 0.06a 0a 0.02a 0.12a 28.9a Jin et al., 2018
Germinating – 48 h 3 0.46b 0a 0.1b 0.016b 3.1b

csn5b-1 (high germination 
rate)

Dry seed 3 0.1a 0a 0.008a 0.1a 19.9c

Germinating – 48 h 3 0.26b 0a 0.13b 0.007b 2.2b

csn5a-1 (retarded seed 
germination)

Dry seed 3 0.56b 0a 0.04ab 0.37c 20.3c

Germinating – 48 h 3 0.02a 0a 0.06ab 0b 0.36d

csn1-10 (stronger seed Dry seed 3 0.34b 0a 0.008a 0.21c 26.4a

Germinating – 48 h 3 0.18b 0a 0.008a 0b 2.3b

G
. m

ax

PRJNA326110 Dry seed embryo Dry seed- 0 h 2 3.8a – – – 36.9a 44.7a Bellieny-Rabelo 
et al., 2016Soaked embryo 

seed
Soaked- 3 h 2 6.2b – – – 35.3a 47.9a

Soaked- 6 h 2 5.3b – – – 24.8b 30.9b

Soaked- 12 h 2 6b – – – 11.9c 16.9c

Soaked- 24 h 2 6.1b – – – 5.4c 20.12c

PRJNA325298 TW-1 (very low rate of seed 
field emergence)

Dry seed – 0 h 3 3.25a – – – 17.1a 32.2a Yuan et al., 
2017Soaked- 12 h 3 3.9a – – – 13.7a 35.5a

1st emerging root 3 1.75b – – – 6.6b 13.5b

TW-1-M (higher rate of seed 
field emergence)

Dry seed- 0 h 3 3.1a – – – 9.6a 29.9a

Soaked- 12 h 3 2.7a – – – 4.19c 19.8a

1st emerging root 3 4.7c – – – 2.98c 25.6a

S
o

m
at

ic
 e

m
b

ry
o

g
en

es
is

A
. t

ha
lia

na

PRJNA320769 Col-0 reference Control- 0 h 3 7a 0.01a 0.31a 0.06a 0.01a Mozgová et al., 
2017Control- 55 h 3 7.06a 0.01a 0.29a 0.6a 0.03a

Auxin induction medium- 55 h 3 17.6b 5.8b 3.11b 9.4b 0.3a

Injury induction medium- 55 h 3 9.4a 0.03a 0.4a 1a 1.1a

Injury + auxin induction medium – 55 h 3 31.5c 8.95c 5.6c 13.2c 0.06a

Clf/swn (mutant without 
somatic embryogenesis 
epigenetic barrier)

Control- 0 h 3 2.85a 0a 0.02a 0a 6.5b

Control- 55 h 3 3.3a 0a 0a 0.05a 5.3b

Aux in induction medium- 55 h 3 2.7a 0a 0.01a 0a 5.3b

Injury induction medium- 55 h 3 5.2a 0.03a 0.02a 0.05a 2.1c

Injury + auxin induction medium – 55 h 3 9.46a 0.02a 0a 0.02a 3.3c

The AOX expression was performed according to Saraiva et al. (2016). Gene expression data were statistically analyzed using the Prism tool (GraphPad Prism), through the variance analysis by analysis of variance with the Tukey test 
parameters. Lower case letters represent the comparison of treatment conditions. Same letters indicate that no statistical difference between time/treatments was observed.
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molecular or metabolic candidates for genotyping. However, our 
extended in silico search (not shown) for candidates from auxin 
metabolism (Porfirio et al., 2016), urease, and others strengthened 
the master role of AOX. Besides, we got hints for a crucial role of 
growth- and development-related, genome-wide CNV for the 
most important repetitive elements in plants. Thus, it remains to 
be explored whether AOX functionality connects also to adaptive 
growth determination via global genome regulation as indicated 
by Arnholdt-Schmitt (1993, 1995, and 2004).
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