Please use this identifier to cite or link to this item:
http://223.31.159.10:8080/jspui/handle/123456789/1133
Title: | Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature |
Authors: | Mishra, Divya Shekhar, Shubhendu Chakraborty, Subhra Chakraborty, Niranjan |
Keywords: | Antioxidant defense Bread wheat Cell death suppressors Cytoplasmic proteome High temperature stress Stress-adaptive responses Thermotolerance |
Issue Date: | 2021 |
Publisher: | John Wiley & Sons |
Citation: | Plant Journal, 105(5): 1374-1389. |
Abstract: | The molecular mechanism of high temperature stress (HTS) response, in plants, has so far been investigated using transcriptomics, while the dynamics of HTS‐responsive proteome remain unexplored. We examined the adaptive responses of the resilient wheat cultivar ‘Unnat Halna’ and dissected the HTS‐responsive proteome landscape. This led to the identification of 55 HTS‐responsive proteins (HRPs), which are predominantly involved in metabolism and defense pathways. Interestingly, HRPs included a 2‐cysteine peroxiredoxin (2CP), designated Ta2CP, presumably involved in stress perception and adaptation. Complementation of Ta2CP in yeast and heterologous expression in Arabidopsis demonstrated its role in thermotolerance. Both Ta2CP silencing and overexpression inferred the involvement of Ta2CP in plant growth and chlorophyll biosynthesis. We demonstrated that Ta2CP interacts with protochlorophyllide reductase b, TaPORB. Reduced TaPORB expression was found in Ta2cp‐silenced plants, while upregulation was observed in Ta2CP‐overexpressed plants. Furthermore, the downregulation of Ta2CP in Taporb‐silenced plants and reduction of protochlorophyllide in Ta2cp‐silenced plants suggested the key role of Ta2CP in chlorophyll metabolism. Additionally, the transcript levels of AGPase1 and starch were increased in Ta2cp‐silenced plants. More significantly, HTS‐treated Ta2cp‐silenced plants showed adaptive responses despite increased reactive oxygen species and peroxide concentrations, which might help in rapid induction of high‐temperature acclimation. |
Description: | Accepted date: 07 December 2020 |
URI: | https://onlinelibrary.wiley.com/doi/10.1111/tpj.15119 http://223.31.159.10:8080/jspui/handle/123456789/1133 |
ISSN: | 1365-313X |
Appears in Collections: | Institutional Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Chakraborty N_2021_2.pdf Restricted Access | 1.71 MB | Adobe PDF | View/Open Request a copy |
Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.