Please use this identifier to cite or link to this item: http://223.31.159.10:8080/jspui/handle/123456789/1337
Title: Combined drought and heat stress influences the root water relation and determine the dry root rot disease development under field conditions: A study using contrasting chickpea genotypes
Authors: Chilakala, Aswin Reddy
Mali, Komal Vitthalrao
Irulappan, Vadivelmurugan
Patil, Basavanagouda S.
Pandey, Prachi
Rangappa, Krishnappa
Ramegowda, Venkategowda
Kumar, M. Nagaraj
Puli, Chandra Obul Reddy
Mohan-Raju, Basavaiah
Senthil-Kumar, Muthappa
Keywords: Macrophomina phaseolina
Cicer arietinum
plant water status
drought
heat
combined stress
stress tolerance
disease resistance
Issue Date: 2022
Publisher: Frontiers Media S.A.
Citation: Frontiers in Plant Science, 13: 890551
Abstract: Abiotic stressors such as drought and heat predispose chickpea plants to pathogens of key importance leading to significant crop loss under field conditions. In this study, we have investigated the influence of drought and high temperature on the incidence and severity of dry root rot disease (caused by Macrophomina phaseolina) in chickpea, under extensive on- and off-season field trials and greenhouse conditions. We explored the association between drought tolerance and dry root rot resistance in two chickpea genotypes, ICC 4958 and JG 62, with contrasting resistance to dry root rot. In addition, we extensively analyzed various patho-morphological and root architecture traits altered by combined stresses under field and greenhouse conditions in these genotypes. We further observed the role of edaphic factors in dry root rot incidence under field conditions. Altogether, our results suggest a strong negative correlation between the plant water relations and dry root rot severity in chickpeas, indicating an association between drought tolerance and dry root rot resistance. Additionally, the significant role of heat stress in altering the dynamics of dry root rot and the importance of combinatorial screening of chickpea germplasm for dry root rot resistance, drought, and heat stress have been revealed.
Description: Accepted date: 15 April 2022
URI: https://www.frontiersin.org/articles/10.3389/fpls.2022.890551/full
http://223.31.159.10:8080/jspui/handle/123456789/1337
ISSN: 1664-462X
Appears in Collections:Institutional Publications

Files in This Item:
File Description SizeFormat 
Senthil-Kumar M_2022_5.pdf3.34 MBAdobe PDFThumbnail
View/Open


Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.