Please use this identifier to cite or link to this item: http://223.31.159.10:8080/jspui/handle/123456789/1570
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Reshma-
dc.contributor.authorDey, Kuntal Kumar-
dc.contributor.authorSenthil-Kumar, Muthappa-
dc.contributor.authorModi, Mahendra Kumar-
dc.contributor.authorSarmah, Bidyut Kumar-
dc.contributor.authorBhorali, Priyadarshini-
dc.date.accessioned2024-02-06T06:20:38Z-
dc.date.available2024-02-06T06:20:38Z-
dc.date.issued2024-
dc.identifier.citationFrontiers in Plant Science, 14: 1251349en_US
dc.identifier.issn1664-462X-
dc.identifier.otherhttps://doi.org/10.3389/fpls.2023.1251349-
dc.identifier.urihttps://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1251349/full-
dc.identifier.urihttp://223.31.159.10:8080/jspui/handle/123456789/1570-
dc.descriptionAccepted date: 14 November 2023en_US
dc.description.abstractAlternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.en_US
dc.description.sponsorshipAuthors are thankful to the Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India, for funding the research; Department of Agricultural Biotechnology, and DBT-NECAB (North East Centre for Agricultural Biotechnology), AAU Jorhat, Assam (India) for providing the necessary laboratory and infrastructural facilities for carrying out the research work; Dr. Aishwarya Baruah, Biswanath College of Agriculture, Assam Agricultural University, for providing valuable suggestions during the study.en_US
dc.language.isoen_USen_US
dc.publisherFrontiers Media S.A.en_US
dc.subjectAlternaria blighten_US
dc.subjectAlternaria brassicicolaen_US
dc.subjectSinapis albaen_US
dc.subjectdefenseen_US
dc.subjectresistanceen_US
dc.subjecttranscriptome profilingen_US
dc.titleComparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapaen_US
dc.typeArticleen_US
Appears in Collections:Institutional Publications

Files in This Item:
File Description SizeFormat 
Senthil-Kumar M_2024_1.pdf
  Restricted Access
8.7 MBAdobe PDFView/Open Request a copy


Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.