Please use this identifier to cite or link to this item: http://223.31.159.10:8080/jspui/handle/123456789/601
Title: mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea
Authors: Das, Shouvik
Singh, Mohar
Srivastava, Rishi
Bajaj, Deepak
Saxena, Maneesha S.
Rana, Jai C.
Bansal, Kailash C.
Tyagi, Akhilesh K.
Parida, Swarup K.
Keywords: chickpea
mQTL-seq
pod number
SNP
wild accessions
Issue Date: 2016
Publisher: Oxford University Press
Citation: DNA Res., 23(1): 53-65
Abstract: The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8-10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (CaqaPN4.1: 867.8 kb and CaqaPN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (CaqbPN4.1: 637.5 kb and CaqbPN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby expediting genomics-assisted breeding and genetic enhancement of crop plants, including chickpea.
Description: Accepted date: 9 November 2015
URI: http://172.16.0.77:8080/jspui/handle/123456789/601
ISSN: 1756-1663
Appears in Collections:Institutional Publications

Files in This Item:
File Description SizeFormat 
Parida SK_2016_1.pdf
  Restricted Access
1.04 MBAdobe PDFView/Open Request a copy


Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.