Please use this identifier to cite or link to this item: http://223.31.159.10:8080/jspui/handle/123456789/706
Title: Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.)
Authors: Pandey, Garima
Yadav, Chandra Bhan
Sahu, Pranav Pankaj
Muthamilarasan, Mehanathan
Prasad, Manoj
Keywords: Methylation-sensitive amplified polymorphism (MSAP)
Salt
Foxtail millet
Abiotic stress
Epigenetics
Methylation
stress
Issue Date: 2017
Publisher: Springer
Citation: Plant Cell Reports, 36(5): 759-772
Abstract: Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.
Description: Accepted date: 7 December 2016
URI: http://59.163.192.83:8080/jspui/handle/123456789/706
ISSN: 1432-203X
Appears in Collections:Institutional Publications

Files in This Item:
File Description SizeFormat 
Prasad M_2017_1.pdf
  Restricted Access
1.6 MBAdobe PDFView/Open Request a copy


Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.