Please use this identifier to cite or link to this item: http://223.31.159.10:8080/jspui/handle/123456789/850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiri, Jitender-
dc.contributor.authorBhosale, Rahul-
dc.contributor.authorHuang, Guoqiang-
dc.contributor.authorPandey, Bipin K.-
dc.contributor.authorParker, Helen-
dc.contributor.authorZappala, Susan-
dc.contributor.authorYang, Jing-
dc.contributor.authorDievart, Anne-
dc.contributor.authorBureau, Charlotte-
dc.contributor.authorLjung, Karin-
dc.contributor.authorPrice, Adam-
dc.contributor.authorRose, Terry-
dc.contributor.authorLarrieu, Antoine-
dc.contributor.authorMairhofer, Stefan-
dc.contributor.authorSturrock, Craig J.-
dc.contributor.authorWhite, Philip-
dc.contributor.authorDupuy, Lionel-
dc.contributor.authorHawkesford, Malcolm-
dc.contributor.authorPerin, Christophe-
dc.contributor.authorLiang, Wanqi-
dc.contributor.authorPeret, Benjamin-
dc.contributor.authorHodgman, Charlie T.-
dc.contributor.authorLynch, Jonathan-
dc.contributor.authorWissuwa, Matthias-
dc.contributor.authorZhang, Dabing-
dc.contributor.authorPridmore, Tony-
dc.contributor.authorMooney, Sacha J.-
dc.contributor.authorGuiderdoni, Emmanuel-
dc.contributor.authorSwarup, Ranjan-
dc.contributor.authorBennett, Malcolm J.-
dc.date.accessioned2018-04-16T07:32:45Z-
dc.date.available2018-04-16T07:32:45Z-
dc.date.issued2018-
dc.identifier.citationNature Communications, 9(1): 1408en_US
dc.identifier.issn2041-1723-
dc.identifier.urihttp://223.31.159.10:8080/jspui/handle/123456789/850-
dc.descriptionAccepted date: 16 March 2018en_US
dc.description.abstractRoot traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort to improve rice P acquisition efficiency. We show by X-ray microCT imaging that root angle is altered in the osaux1 mutant, causing preferential foraging in the top soil where P normally accumulates, yet surprisingly, P acquisition efficiency does not improve. Through closer investigation, we reveal that OsAUX1 also promotes root hair elongation in response to P limitation. Reporter studies reveal that auxin response increases in the root hair zone in low P environments. We demonstrate that OsAUX1 functions to mobilize auxin from the root apex to the differentiation zone where this signal promotes hair elongation when roots encounter low external P. We conclude that auxin and OsAUX1 play key roles in promoting root foraging for P in rice.en_US
dc.description.sponsorshipThis work was supported by the awards from the Biotechnology and Biological Sciences Research Council [grant numbers BB/G023972/1, BB/R013748/1, BB/L026848/1, BB/M018431/1, BB/PO16855/1, BB/M001806/1, BB/P010520/1]; the European Research Council FUTUREROOTS Advanced Investigator grant [grant number 294729]; Leverhulme Trust [grant number RPG-2016-409]; Royal Society [grant number WM130021, NA140281]; Newton International Fellowship (NF140287) and British Council Newton Bhabha (228144076). This work was also supported by funds from the University of Nottingham Future Food Beacon of Excellence Nottingham Research and PhD+ fellowship schemes; the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office [P7/29]; the Swedish Governmental Agency for Innovation Systems (VINNOVA), and the Swedish Research Council (V.R.) to K.L. We also thank Roger Granbom (Swedish University of Agricultural Sciences) for technical assistance and Gabriel Castrillo for commenting on the manuscript text. Part of this work has been conducted at the Rice Functional Genomics REFUGE platform funded by Agropolis Fondation in Montpellier, France.en_US
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.subjectAbioticen_US
dc.subjectAuxinen_US
dc.subjectOsAUX1en_US
dc.subjectexternal phosphateen_US
dc.subjectRice auxinen_US
dc.titleRice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphateen_US
dc.typeArticleen_US
dc.identifier.officialurlhttps://www.nature.com/articles/s41467-018-03850-4en_US
dc.identifier.doi10.1038/s41467-018-03850-4en_US
Appears in Collections:Institutional Publications

Files in This Item:
File Description SizeFormat 
Giri J_2018_3.pdf1.52 MBAdobe PDFThumbnail
View/Open


Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.