Please use this identifier to cite or link to this item: http://223.31.159.10:8080/jspui/handle/123456789/852
Title: Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea
Authors: Basu, Udita
Bajaj, Deepak
Sharma, Akash
Malik, Naveen
Daware, Anurag
Narnoliya, Laxmi
Thakro, Virevol
Upadhyaya, Hari D.
Kumar, Rajendra
Tripathi, Shailesh
Bharadwaj, Chellapilla
Tyagi, Akhilesh K.
Parida, Swarup K.
Keywords: chickpea
GWAS
QTL
photosynthesis
SNP
yield
Issue Date: 2019
Publisher: John Wiley & Sons
Citation: Plant, Cell & Environment, 42(1): 158-173
Abstract: Understanding the genetic basis of photosynthetic efficiency (PE) contributing to enhanced seed yield per plant (SYP) is vital for genomics-assisted crop improvement of chickpea. The current study employed an integrated genomic strategy involving photosynthesis pathway gene-based association mapping, genome-wide association study, QTL mapping and expression profiling. This identified 16 potential SNP loci linked to major QTLs underlying 16 candidate genes significantly associated with PE and SYP traits in chickpea. The allelic variants were tightly linked to positively interacting QTLs regulating both enhanced PE and SYP traits as exemplified by a chlorophyll A-B binding protein-coding gene. The leaf tissue-specific pronounced up-regulated expression of 16 associated genes in germplasm accessions and homozygous individuals of mapping population was evident. Such combinatorial genomic strategy coupled with gene haplotype-specific association as well as in silico protein-protein interaction study delineated natural alleles and superior haplotypes from a chlorophyll A-B binding protein-coding gene and its interacting gene, Timing of CAB Expression 1, which appear to be most-promising candidates in modulating chickpea PE and SYP traits. These functionally pertinent molecular signatures identified have efficacy to drive marker-assisted selection for developing PE-enriched cultivars with high seed yield in chickpea.
Description: Accepted date: 3 April 2018
URI: http://223.31.159.10:8080/jspui/handle/123456789/852
ISSN: 1365-3040
Appears in Collections:Institutional Publications

Files in This Item:
File Description SizeFormat 
Parida SK_2018_2.pdf
  Restricted Access
1.34 MBAdobe PDFView/Open Request a copy


Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.