Please use this identifier to cite or link to this item:
http://223.31.159.10:8080/jspui/handle/123456789/913
Title: | Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings |
Authors: | Rathi, Divya Gayali, Saurabh Pareek, Akanksha Chakraborty, Subhra Chakraborty, Niranjan |
Keywords: | Grasspea Transcript diversity Metabolome profling Water-defcit Stress response Biomarkers |
Issue Date: | 2019 |
Publisher: | Springer Nature |
Citation: | Planta, 250(3): 839-855 |
Abstract: | Main conclusion This study highlights dehydration-mediated temporal changes in physicochemical, transcriptome and metabolome profles indicating altered gene expression and metabolic shifts, underlying endurance and adaptation to stress tolerance in the marginalized crop, grasspea. Grasspea, often regarded as an orphan legume, is recognized to be fairly tolerant to water-defcit stress. In the present study, 3-week-old grasspea seedlings were subjected to dehydration by withholding water over a period of 144 h. While there were no detectable phenotypic changes in the seedlings till 48 h, the symptoms appeared during 72 h and aggravated upon prolonged dehydration. The physiological responses to water-defcit stress during 72–96 h displayed a decrease in pigments, disruption in membrane integrity and osmotic imbalance. We evaluated the temporal efects of dehydration at the transcriptome and metabolome levels. In total, 5201 genes of various functional classes including transcription factors, cytoplasmic enzymes and structural cell wall proteins, among others, were found to be dehydration-responsive. Further, metabolome profling revealed 59 dehydration-responsive metabolites including sugar alcohols and amino acids. Despite the lack of genome information of grasspea, the time course of physicochemical and molecular responses suggest a synchronized dehydration response. The cross-species comparison of the transcriptomes and metabolomes with other legumes provides evidence for marked molecular diversity. We propose a hypothetical model that highlights novel biomarkers and explain their relevance in dehydration-response, which would facilitate targeted breeding and aid in commencing crop improvement eforts. |
Description: | Accepted date: 21 December 2018 |
URI: | http://223.31.159.10:8080/jspui/handle/123456789/913 |
ISSN: | 1432-2048 |
Appears in Collections: | Institutional Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Chakraborty N_2019_1.pdf Restricted Access | 4.87 MB | Adobe PDF | View/Open Request a copy |
Items in IR@NIPGR are protected by copyright, with all rights reserved, unless otherwise indicated.